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Abstract. An immediate snapshot object is a high level communication object,
built on top of a read/write distributed system in which all except one pseses
may crash. It allows each process to write a value and obtains a setofga-
cess id, value) such that, despite process crashes and asynieasts obtained

by the processes satisfy noteworthy inclusion properties.

Considering am-process model in which up toprocesses are allowed to crash
(t-crash system model), this paper is on the constructionresilient immedi-

ate snapshot objects. In thiecrash system model, a process can obtain values
from at least(n — t) processes, and, consequentlyjnmediate snapshot is as-
sumed to have the properties of the basic— 1)-resilient immediate snapshot
plus the additional property stating that each process obtains valuesifieast

(n — t) processes. The main result of the paper is the following. While there is
a (deterministic)(n — 1)-resilient algorithm implementing the basie — 1)-
immediate snapshot in gn — 1)-crash read/write system, there istesilient
algorithm in at-crash read/write model whene [1..(n — 2)]. This means that,
whent < n — 1, the notion oft-resilience is inoperative when one has to imple-
mentt-immediate snapshot for these valueg:dhe model assumption “at most

t < n — 1 processes may crash” does not provide us with additional computa-
tional power allowing for the design of a genuitieesilient algorithm (genuine
meaning that such an algorithm would work in therash model, but not in the

(t + 1)-crash model). To show these results, the paper relies on well-known dis
tributed computing agreement problems such as consensussetdgreement.

Keywords: Asynchronous system, Atomic read/write register, Consensus, Dis-
tributed computability, Immediate snapshot, Impossibility, Iterated mad8kt
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1 Introduction

Immediate snapshot object and iterated immediate snapsodél

Theimmediate snapshd@tS) communication object and the associatedated imme-
diate snapshot11S) model have been introduced in [5,20], and later ingaséd in [7].
This distributed computing model consistsrofsynchronous processes, among which
any subset of up tén — 1) processes may crastwhich execute a sequence of asyn-

! From a terminology point of view, we sayfailure model(in the present casiecrash model
if the model allows up ta processes to fail. We keep the tetrnesiliencefor algorithms.



chronous rounds. One and only one immediate snapshot (J&tab associated with
each round, which allows the processes to communicateglthia round. More pre-
cisely, for anyz > 0, a process accesses theh immediate snapshot only when it
executes the-th round, and it accesses it only once.

From an abstract point of view, an IS obje/SP, can be seen as an initially
empty set, which can then contain at magpairs (one per process), each made up of
a process index and a value. This object provides the presegth a single operation
denotedwrite_snapshot(), that each process may invoke only once. The invocation
IMSP .write_snapshot(v) by a procesy, adds the paiKi, v) to IMSP and returns a
set of pairs belonging t@éM/SP such that the sets returned to the processes that invoke
write_snapshot() satisfy specific inclusion properties. It is important tdioe that, in
the IIS model, the processes access the sequence of |Ssotpecafter the other, in the
same order, and asynchronously.

The noteworthy feature of the 1IS model is the following. #shbeen shown by
Borowsky and Gafni in [7], that this model is equivalent te tisual read/write wait-
free model (n — 1)-crash model) for task solvability with the wait-freedonogress
condition (any non-faulty process obtains a result). Itgaatage lies in the fact that
its runs are more structured and easier to analyze than tiseémuhe basic read/write
shared memory model [27]. It is also the basis of the combitadttopology approach
for distributed computing (e.g., [17]). Hence, IS objeasstitute the algorithmic foun-
dation of distributed iterated computing models.

It has been shown in [30] that trying to enrich the IS modethw(inon trivial)
failure detectors is inoperative. This means that, for edemenriching 1IS with the
failure detector(? (which is the weakest failure detector that allows consgrelbe
solved in the basic read/write communication model [10,24fs not allow to solve
consensus in such an enriched 1IS model. However, it has $leamn in [29] that it
is possible to capture the power of a failure detector (ahdrgpartially synchronous
systems) in the IS model by appropriately restricting ésa runs, giving rise to the
Iterated Restricted Immediate Snaps(i&lS) model. This approach has been further
investigated in [32].

The 1IS model has many interesting features among whichdhewfing two are
noteworthy. The first is on the foundation side of distrillléemputing, namely IIS es-
tablished a strong connection linking distributed compgiind algebraic topology (see
[6,17,19,21,33]). The second one lies on the algorithmit@ogramming side, namely
I1S allows for a recursive formulation of algorithms solgidistributed computing prob-
lems. This direction, initiated in [5,15], has also beerestigated in [28,31].

Another line of research is investigated in [14]. This pag@rsiders models of dis-
tributed computations defined as subsets of the runs ofehetétd immediate snapshot
model. In such a context, it uses topological techniquesl¢atify the tasks that are
solvable in such a model.

The(n — 1)-crash model is also callegait-freemodel [16]. Several progress conditions have
been associated witfn — 1)-resilientalgorithms: wait-freedom [16], non-blocking [22], or
obstruction-freedom [18]. (See a unified presentation in Chapter3LpH [



t-Crash model and-resilient algorithms

The previous basic read/write model and IS model considat &ll but one process
may crash. Differently, &-crash model assumes that at mbgrrocesses may crash,
i.e., by assumption, at least — t) of them never crash. As already said, an algorithm
designed for such a model is said totbeesilient.

One of the most fundamental results of distributed compguignthe impossibil-
ity to design al-resilient consensus algorithm in thecrashn-process model, be the
communication medium an asynchronous message-passiegsjis3] or a read/write
shared memory [25]. Differently, other problems, such asneing (introduced in the
context of¢-resilient message-passing systems whete n/2 [3]), can be solved by
(n — 1)-resilient algorithms in thén — 1)crash read/write shared memory model (such
renaming algorithms are described in several textboogs[431,34]).

Contribution of the paper

When considering thecrashn-process model wherte< n—1, and assuming that each
correct process writes a value, a process may wait for valuiéen by (n—t) processes
without risking being blocked forever. This naturally lsad the notion of &-crashn-
process iterated model, generalizing the 1IS model to ahyevaf ¢. To this end the pa-
per introduces the notion oflaimmediate snapshot object, which generalizes the basic
(n — 1)-immediate snapshot object. More precisely, when conisigex t-immediate
snapshot object in &crashn-process model, an invocation wtite_snapshot() by a
process returns a set including at le@stt) pairs (while it would return a set af pairs
with 1 < z < n if the object was an IS object). Hencet-anmediate snapshot object
allows processes to obtain as much information as posgsibfe the other processes
while guaranteeing progress.

The obvious question is then the implementability éfimmediate snapshot object
in the t-crashn-process model. This question is answered in this papeghaghiows
that it is impossible to implement @IS object in at-crashn-process model when
0 < t < n — 1. More precisely we prove that implementing-t5 object is equivaleit
to implementing consensus wher< n/2 and enables to impleme(®t — n + 2)-set
agreementwhen/2 <t <n — 1.

At first glance, this impossibility result may seem surpiigiAn IS object is a snap-
shot object (a) whose operationsite() andsnapshot() are glued together in a single
operationwrite_snapshot(), and (b) satisfying an additional property linking the sets
of pairs returned by concurrent invocations (calleanediacyproperty, Section 2.2).
Then, as already indicatedtdS object is an IS object such that the sets returned by
write_snapshot() contain at leastn — ¢) pairs Qutput sizgroperty, Section 2.4). The
same Output size property on the sets returned by a snapiject can be trivially
implemented in &-crashn-process model. Let us callsnapshot such a constrained
snapshot object. Hence, whiletanapshot object can be implemented in therash
n-process model, &S object cannot whef < t < n — 1.

Roadmap
As previously indicated, the paper is on the computabildawer oft-1S objects in the

2 Ais equivalent to B if A can be (computationally) reduced to B and recigdhpc



t-crash computing model, far < n — 1. Made up of 7 sections, it has the following
content.

— Section 2 introduces the basic crash-prone read/writeesyshodel, immediate
shapshot, &-set agreement, aridimmediate snapshok{lS). It also proves a the-
orem which captures the additional computational powér-mhmediate snapshot
with respect to the basia: — 1)-immediate snapshot.

— Assuming a majority of processes never crash, i.ecesh read/write model in
which ¢ < n/2, Section 3 shows that it is impossible to implemeéiinmediate
shapshot in such a model. The proof is a reduction of the csuseproblem to
t-immediate snapshot.

— Assumingt < n—1, Section 4 presents a reductionéeimmediate snapshot to con-
sensus in a@-crash read/write model. When combined with the result otiSe®d,
this shows that-immediate snapshot and consensus have the same comipaitatio
power in anyt-crash model where < n /2.

— Assuming &-crash read/write model in which/2 < t < n — 1, Section 5 shows
that it is impossible to implememtimmediate snapshot in such a model. The proof
is a reduction of thé2¢t — n + 2)-set agreement problem tammediate snapshot.

— By a simulation argument, Section 6 shows that consensust isofvable witht-
immediate snapshot whety2 < ¢ < n proving that the computational power of
t-immediate snapshot whén< ¢ < n/2 is strictly stronger than the computational
power oft-immediate snapshot whery2 <t < n.

Finally, Section 7 concludes the paper.

2 Immediate Snapshotk-Set Agreement,
and k-Immediate Snapshot

2.1 Basic read/write system model

Processes

The computing model is composed of a sehiof 3 sequential processes denojgdl
..., pn- Ea@ch process is asynchronous which means that it procéédsosvn speed,
which can be arbitrary and remains always unknown to ther gteeesses.

A process may halt prematurely (crash failure), but exexcaterectly its local al-
gorithm until it possibly crashes. The model parametgenotes the maximal number
of processes that may crash in a run. A process that crashesiimis said to béaulty.
Otherwise, it iscorrect or non-faulty Let us notice that, as a faulty process behaves
correctly until it crashes, no process knows if it is correcfaulty. Moreover, due to
process asynchrony, no process can know if another procasked or is only very
slow.

It is assumed that (&) < ¢ < n (at least one process may crash and at least one
process does not crash), and (b) any process, until it gpssishes, executes the
algorithm assigned to it.



Communication layer

The processes cooperate by reading and writing Single-k\Witdti-Reader (SWMR)
atomic read/write registers [23]. This means that the sharemory can be seen as a
set of arraysA[1..n] where, whileA[i] can be read by all processes, it can be written

only by p;.

Notation
The previous model is denot€ddRW,, ,[0] (which stands for “Crash Asynchronous
Read/Write withn processes, among which upttonay crash”). A model constrained
by a predicate on (e.g.t < x) is denotedC ARW,, [t < z]|. Hence, as we assume
at least one process does not cra8BARW,, ,[t < n] is a synonym oL ARW,, (0],
which (as always indicated) is calleehit-freemodel. When consideringcrash mod-
els,CARW,, [t < «a] is less constrained thahARW,, ,[t < o — 1].

Shared objects are denoted with capital letters. The lamahbles of a process
are denoted with lower case letters, sometimes suffixeddopithcess index

2.2 One-shot immediate snapshot object

The immediate snapshot (IS) object was informally preskiriethe introduction. It
can be seen as a variant of the snapshot object introducddzh YWhile a snapshot
object provides the processes with two operationsté() andsnapshot()) which can

be invoked separately by a process (usualtite() beforesnapshot()), a immediate
snapshot provides the processes with a single operatiada_snapshot(). One-shot
means that a process may invokete_snapshot() at most once.

Definition

An IS object/MSP is a set, initially empty, that will contain pairs made up gfracess
index and a value. Let us consider a progesthat invokes/MSP .write_snapshot(v).

This invocation adds the paft, v) to IMSP (contribution ofp, to IMSP), and returns

to p; a set, called view and denotedew;, such that the sets returned to the processes
collectively satisfy the following properties.

— Termination. The invocation afrite_snapshot() by a correct process terminates.
— Self-inclusion¥ i : (i,v) € view;.

— Validity. Vi : ((j,v) € view;) = p; invokedwrite_snapshot(v).

— Containmenty ¢, j : (view; C view;) V (view; C view;).

— ImmediacyV i,j : ((i,v) € view;) = (view; C view;).

It is relatively easy to show that the Immediacy property barre-stated as follows:
Vi, j: (((i,—) € view;) A ((j, —) € view;)) = (view; = view;).

Implementation

Implementations of an IS object in the wait-free modelRW,, [0 < ¢t < n] are
described in [5,15,28,31]. While both a one-shot snapshietcblnd an IS object sat-
isfy the Self-inclusion, Validity and Containment propest only an IS object satisfies
the Immediacy property. This additional property createsygortant difference, from



which follows that, while a snapshot object is atomic (ofierss on a snapshot ob-
ject can be linearized [22]), an IS object is not atomic (jiem@tions cannot always be
linearized). However, an IS object is set-linearizable-(isearizability allows several
operations to be linearized at the same point of the time[@r26]).

The iterated immediate snapsHts) model

In this model (introduced in [7]), the shared memory is cosgubof a (possibly infinite)
sequence of IS objectsMSP[1], IMSP[2], ... These objects are accessed sequentially
and asynchronously by the processes according to the folipround-based pattern
executed by each process The variabler; is local top;; it denotes its current round
number.

r; < 0; ¢s; « initial local state ofp; (including its input, if any);
repeat forever % asynchronous 1S-based rounds

r; < 1r; + 1,

view; < IMSP|r;].write_snapshot(¢s;);

computation of a new local state; (which containgiew;)
end repeat

As indicated in the Introduction, when considering disitédl tasks (as formally defined
in [8,21]), the IIS model and ARW,, [0 < t < n] have the same computational
power [7].

2.3 k-Set agreement

k-Set agreement was introduced by S. Chaudhuri [11] to ifgagstthe relation linking
the number of different values that can be decided in an aggeeproblem, and the
maximal number of faulty processes. It generalizes consanbkich corresponds to the
casek = 1.

A k-set agreement object is a one-shot object that providepritesses with a
single operation denotggtopose,, (). This operation allows the invoking processto
propose a value it passes as an input parameter (qaitgmbsedvalue), and obtain a
value (calleddecidedvalue). The object is defined by the following set of propesti

— Termination. The invocation qfropose, () by a correct process terminates.
— Validity. A decided value is a proposed value.
— Agreement. No more thaindifferent values are decided.

It is shown in [6,21,33] that the problem is impossible toredh CARW,, +[k < t].

2.4 k-Immediate Snapshot

A k-immediate snapshot object (denotetl) is an immediate snapshot object with the
following additional property.

— Output size. The setiew obtained by a process is such thatw| > n — k.

Theorem 1. A k-IS object cannot be implementedGARW,, [k < t].



Proof To satisfy the output size property, the view obtained byoa@ss,; must contain
pairs from(n — k) different processes. ifprocesses crash (e.g. initially), a process can
obtain at mostn — t) pairs. Ift > k, we haven —t < n — k. It follows that, after it has
obtained pairs fronin — t) processes, a process can remain blocked forever waiting for
the (t — k) missing pairs. O heorem 1

Considering the system modedRW,, [0 < ¢t < n — 1], the next theorem character-
izes the power of &1S object in term of the Containment property.

Theorem 2. Considering the system modg4RW,, ;[0 < t < n — 1], and at-IS
object, let us assume that all correct processes inwakg:_snapshot(). No process
obtains a view with less thafn — ¢) pairs. Moreover, if the size of the smallest view
obtained by a process i5(¢ > n — t), there is a sef' of processes such thg| = ¢ >

n — t and each process ¢f obtains the smallest view or crashes during its invocation
of write_snapshot().

Proof It follows from the Output size property of thelS object that no view contains
less than(n — t) pairs. Letview be the smallest view returned by a process, and let
¢ = |view|. We havel > n — t. Moreover, due to (a) the Immediacy property (namely
((i,—) € view) = (view; C view)) and (b) the minimality ofview, it follows that
view; = view. As this is true for each process whose pair participatasdw, and

¢ = |view], it follows that there is a sef of processes such thgf| = ¢ > n — ¢

and each of its processes obtains the vigwtw, or crashed during its invocation of
write_snapshot(). Due to the Containment property, the others processds arabtain
views which strictly includeiew. O heorem 2

3 t-Immediate Snapshot is Impossible in

This section shows that it is impossible to implemer8 object wher) < ¢ < n/2.

From¢-IS to consensus IBARW,, [0 < t < n/2]

Algorithm 1 reduces consensusttS in the system mod€ ARW,, ;[0 < t < n/2].
As at mostt < n/2 process may crash, at least- ¢ > n/2¢ processes invoke the
consensus operatigmopose; ().

operation propose; (v) is

(1) wiew; < IMSP .write_snapshot(v); VIEWi] + views;
(2) wait(|{ jsuchthaV IEW[j] # L} =t + 1);

(3) let view bethe smallest of the previoys + 1) views;

(4) return(smallest proposed value iriew)

end operation

Algorithm 1: Solving consensus BUARW,, [0 < t < n/2,t-1S] (code forp;)



In addition to &-1S object denotedMSP, the processes access an arvdy 1V |[1..n)
of SWMR atomic registers, initialized o, - - - , 1]. The aim of VIEW ] is to store
the view obtained by, from thet-1S object/MSP.

When it callspropose, (v), a proces®; invokes first thet-IS object, in which it
deposits the paifi, v), and obtains a view from it, that it writes IHIE T [4] to make it
publicly known (line 1). Then, it waits (line 2) until it sedse views of at leasft + 1)
processes (as —t >t + 1, p; cannot block forever and at least one of these views is
from a correct process). Procgs®xtracts then of these views the one with the smallest
cardinality (line 3), and finally returns proposed valuetagmed in this smallest view
(line 4).

Theorem 3. Algorithm 1 reduces consensus#dS in CARW,, [0 < t < n/2].

Proof Let us first prove the consensus Termination propertynAst > t + 1, and
there are at leagtn — ¢) correct processes, it follows that at leést— ¢) entries of
VIEW [1..n] are eventually different from_.. Hence, no correct process can remain
blocked forever at line 2, which proves consensus Ternanati

Let us now consider the consensus Agreement propertyldtfslfrom Theorem 2
that there is a set of at least> n — t processes, that obtained the same wiein_view
(or crashed before returning fromrite_snapshot()), and this view is the smallest view
obtained by a process and its siz@ign_view| = £. As{ > n—t and(n—t)+(t+1) >
n, it follows from the waiting predicate of line 2, that, anyopess that executes line 3,
obtains a copy ofnin_view, and consequently we haveéew = min_view at line 3.
It follows that no two processes can decide different values

Finally, the consensus Validity property follows from tlaetthat any pair contained
in a view is composed of a process index and the value progms#te corresponding
process. UTheorem 3

Corollary 1. Implementing &-IS object inCARW,, [0 < t < n/2] is impossible.

Proof The proof is an immediate consequence of Lemma 3, and théhfstatonsensus
cannot be solved iIBARW,, +[0 < t < n/2] [25]. Ocoroliary 1

4 From Consensus ta-ISin CARW,,:[0 < t < n — 1]

Algorithm 2 describes a reduction ofIS to consensus iIBARW,, [0 < ¢t < n —
1]. This algorithm uses two shared data structures. The fiest iarrayREG|[1..n] of
SWMR atomic registers (wherBEGi] is associated withy;). The second is an array
of (t + 1) consensus objects denot€dNS|[(n — t)..n].

The invocation ofwrite_snapshot(v;) by a proces®; depositsy; in REG|i], and
launches two underlying task3l and7'2. The taskl'2 is a simple waiting task, which
will return a view to the calling procegs. Thereturn() statement at line 9 terminates
thewrite_snapshot() operation invoked by;. The termination of'2 does not kill the
taskT'1 which may continue executing.



operation write_snapshot(v; ) is
(1) REGI[i] + v;; view; + 0; dec; + 0; k < —1; launch the tasks'1 and7'2.

(2) taskTlis
3) repeatk < k + 1;

(4) wait(3 a setauz;: (dec; C aux;) A (lauz;| =n—t+ k)

A (auz; C {{j, REG[j]) such thatREG[j] # L1}));
(5) dec; <~ CONS[n — t + k].propose, (auz;);
(6) if ({(i,v:) € dec;) A (view; = 0) then view, < dec; end if

@ until (k = t) end repeat
(8) endtaskT1.

(9) task T2 iswait(view; # 0); return(view;) end taskT2.
end operation

Algorithm 2: Implementing-IS in CARW,, ;[0 < t < n/2, CONY (code forp;)

TaskT'1 (lines 2-8) has two aims: provige with a viewview; (line 6), and prevent
processes from deadlocking, thereby allowing them to teaui It consists in a loop
that is executedt + 1) times. The aim of thé-th iteration (starting ak = 0) is to
allow processes to obtain a view includifyg — ¢ + k) pairs. More precisely, we have
the following.

— When it enters th&-th iteration, a procegs first waits until it obtains a set of pairs,
denotediuz;, which (a) containgn — ¢t + k) pairs, (b) contains the set set of pairs
dec; decided during the previous iteration, and (c) containy @alirs extracted
from the arrayREG|[1..n]. This is captured by the predicate of line 4.

— Then,p; proposes the set.z; to the consensus obje€tONS[n —t + k] associated
with the current iteration step (line 5). The set decidedasesl indec;.

— Finally, if its pair (7, v;) belongs todec; andp; has not yet decided (i.e., no set
has yet been assigned#éew;), it does it by writingdec; in view;. Let us notice
that this ensures the Self-inclusion property oftH& object. Moreover, a process
decides no more than once.

Whether a process decides or not during the current iterategn it systematically
proceeds to the next iteration step. Hence, a process ttanhslits view during an
iteration stepe can help other processes to obtain a view during later iterateps

y>x.

Theorem 4. Algorithm2 reduceg-IS to consensus iIGARW,, ;[0 < t < n —1].

Proof The Self-inclusion property follows directly from the predte (i, v;) € dec;
used before assigningec; to view; at line 6.

The Validity property follows from (a) the fact that a proses assigns the value it
wants to deposit in thelS object inREG]i], (b) this atomic variable is written at most
once (line 1), and (c) the predica®¥ ' G[j] # L is used at line 4 to extract values from
REG[1..n].



The Output size property follows from the predicate of linevhich requires that
any setaux; (and consequently any sétc; output by a consensus object) contains at
least(n — t) pairs.

To prove the Immediacy property, let us consider any two @seeg; andp; such
that (j,v;) € view; and(i,v;) € view;. Let dec,[k| denote the local variabléec,
afterp, assigned it a value at line 5 during iteration skep

Let k; be the iteration step at whigh assignsiec; to view; (due to the predicate
view; = () used at line 5, such an assignment is done only once). lslfoom the
first predicate of line 6, thai, v;) € dec;[k;] = view,; (otherwiseiew; would not
be assignedec;); k;, dec;, andview; being defined similarly, we also hayg v;) €
decjlk;] = view;. As by assumption we havg,v;) € view; and (i,v;) € view;,
we also have( (i, v;), (j,v;)} C dec;[k;] = view; and{(i,v;), (j,v;)} C dec;lk;] =
view;. Due to the Agreement property of the consensus objects awedac; [k;] =
decj [kq], anddec,; [kj] = decj [k]]

Let us assume thaf < k;. This is not possible because, on the one sjde;;) €
dec;k;] = decjlk;], and, on the other sidé; is the only iteration step at which we
have (j,v;) € dec; A view; = () (and consequentlyiew; is assigned the value in
dec;[k;]). For the same reason, we cannot hiaye- k;. It follows thatk; = k;. Hence,
asdec;|k;] = dec;[k;], p; andp; obtain the very same view (and this occurs during the
same iteration step).

As far as the Containment property is concerned, we haveottoeving. Consider-
ing the iteration numbek, let us first observe that, due to the predidater;| = n—t+k
(line 4), the set output by/ONS[n — ¢ + k] containsn — t + k pairs. Hence, the se-
guence of consensus outputs sets whose size is increaseatbgach instance. Let
us now observe that, due to the predicdte; C aux; (line 4), the set output by
CONS[n — t + k + 1] is a superset of the set output by the previous consensus in-
stanceCONS|[n — t + k. It follows that the sequence of pairs output by the consensu
instances is such that each set of pairs includes the pes&iplus one new element,
from which the Containment property follows.

As far as the Termination property is concerned pléie the number of processes
that have deposited a value REG[1..n]. We haven — ¢t < p < n. It follows from
the predicate in the wait statement (line 4), that no procassblock forever at this
line for k € [0..p — n + t]. As there are at leagh — t) correct processes, and none of
them can be blocked forever at line 4, it follows that eacthefit invokesCONS[n —

t + k].propose; () (line 5), for eachk € [0...p — n + t]. Hence, the only reason for a
correct process not to obtain a view (and terminate), is v@mnexecute the assignment
view; < dec; atline 7.

The sequence of consensus instances outputs a sequends of pairs whose
successive sizes afe — t), (n — ¢t + 1), ..., p, which means that the identity of every
of the p processes that wrote IREG|1..n| appears at least once in the sequence of
consensus outputs. Hence, for each correct proggdbere is a consensus instance



whose outputlec is such that, whileiew; = 0, we have(i, v;) € dec, which concludes
the proof of the Termination property. O heorem 4

Corollary 2. Consensus antlS are equivalent irCARW,, +[0 < t < n/2].

Proof The proof follows from Theorem 3 (Algorithm 1) and TheorenMgorithm 2).
DTheorem 2

5 t-Immediate Snapshot is Impossible in
CARW, +[n/2 <t <n —1]

This section shows that it is impossible to implemetii& object inCARW,, ;[n/2 <
t < n — 1]. To this end, it presents a reduction/oket agreement (in shoktSA) to
t-1S for k = 2t — n + 2 (e.g., a reduction ofn — 2)-SA agreement tgn — 2)-IS in
CARWn,7t[t =nNn — 2})

From¢-IS to (2t — k + 2)-set agreement ilCARW,, ¢[n/2 <t < n — 1,t-IS]
Algorithm 3 reduce$2t —n+2)-set agreement oIS inCARW,, 1 [n/2 <t < n—1].
As at mostt process may crash, at ledst — t) processes invoke thie SA operation
propose, (). This algorithm is very close to Algorithm 1. Its main diféerce lies in the
replacement oft + 1) by (n — t) at line 2.

operation proposey, _,,, 5(v) is

(1) wiew; < IMSP .write_snapshot(v); VIEW [i] < views;
(2) wait(|{ j suchthatVIEW[j] # L} =n —1t);

(3) letwview bethe smallest of the previoys — t) views;
(4) return(smallest proposed value iriew)

end operation

Algorithm 3: Solving(2t — n + 2)-set agreement iBARW,, ;[n/2 < t < n —1,t-IS]
(code forp;)

Theorem 5. Algorithm3reduceg2t—n+2)-set agreement tolSin CARW,, ¢[n/2 <
t<n-—1].

Proof Letk =2t —n + 2.

Let us first consider the-SA Termination property. There are at le@st-t) correct
processes, and each of them first invok&ESP .write_snapshot() and then writes the
view it obtained in the shared arrdy/EW (line 1). Hence, at least: — ¢) entries of
VIEW are eventually different fromi., from which follows that no process can block
forever at line 2.



Let us now consider thg-SA Validity property. It follows from the Containment
property of the-IS object that any set of views depositediiiis W is not empty. There-
fore, the view selected by a process at line 3 is not empty. ¥isva can only contain
pairs, each including a proposed value (line 1),kHeA Validity property follows.

Let us finally consider th&-SA Agreement property. Let us first observe that, due
to thet-1S Containment property and Theorem 2, at most (n —¢) + 1 =t + 1
different views can be written in the arrdy/EW[1..n]. Let V(1) the smallest of these
views (which containg > n — ¢ pairs),V (2) the second smallest, etc., uriti(t + 1)
the greatest one. There are two cases according taithe’) non-L views obtained by
a procesyp; at line 2. Let us remind that, as< 2t, we haven — ¢t < ¢.

— Case 1. The view (1) belongs to thén — t) views obtained by;. In this casep;
selectsV (1) at line 3 and decides at line 4 the smallest proposed valugioea
in V(1).

— Casc(e % The vieWw (1) does not belong to th: — ¢) views obtained by,. Hence,
the(n—t) views obtained by any process of Case 2 belorgt@®@), - -- , V(¢+1)}.
It follows that them = (n — t) — 1 biggest views in{V(2),--- , V(¢ + 1)} will
never be selected be the processes that are in Case 2, ardwensy the set of
these processes obtain at mostm =t — ((n — t) — 1) = 2t — n + 1 different
smallest views. Hence, these processes may decide at2mest + 1 different
values at line 4.

When combining the two cases, at mbst 2t — n + 2 different values can be decided,
which concludes the proof of the theorem. OTheorem 5

Corollary 3. Implementing &-IS objectinCARW,, ;[n/2 < t < n—1] isimpossible.

Proof Ast < n — 2, we have2t — n + 2 < t. The proof is an immediate conse-
quence of Theorem 5, and the fact tl2¢t — n + 2)-set agreement cannot be solved in
CARW,[n/2 <t <n—1][5,21,33]. Ocoroliary 3

6 t-Immediate Snapshot and Consensus in

Theorem 6. There is na-resilient consensus algorithm usingmmediate snapshot in
CARW,, 4[n/2 <t <mn—1].

The proof the theorem is by contradiction. It assume thatetiseat-resilient con-
sensus algorithml for a set of process€®, - - - , p,, }, which uses a-immediate snap-
shot object in a system where= 2t (the cases for the other valuestafan easily be
reduced to this case).

The contradiction is obtained by simulatingwith two processe§, and@, such
that @y, and @, solve consensus despite the possible crash of one of therhefes
is no wait-free consensus algorithm for 2 processes, ibvialthat such a consensus
algorithm A based ort-immediate snapshot objects does not exist. The proof can be
found in [12].



7 Conclusion

This paper addressed the desigrt-oblerant algorithms building &immediate snap-
shot ¢-IS) object. Such an object in an immediate snapshot obgkfined by Ter-
mination, Self-inclusion, Containment, and Immediacypgenties), in a-crash asyn-
chronous system. Hence, it is required that each set retuma process contains at
least(n — t) pairs. Immediate snapshot correspond&ite- 1)-immediate snapshot.

| 1<t<n/2 [ nf2<t<n-1 |
t-1S implementg-CONS (Th. 3)| ¢-IS implementg2¢t — n + 2)-Set agreement (Th. 5
t-IS does not implemernt CONS (Th.6)

| ¢-CONS implements-IS (Th. 4)] t-CONS implements-IS (Th. 4) |

Table 1. Summary of results presented in the paper

The paper has shown that, while it is possible to buildan- 1)-IS object in the
asynchronous read/wri{e. — 1)-crash model, it is impossible to buildtdS object in
an asynchronous read/writecrash model whed < ¢ < n — 1. It follows that the
notion of an IIS distributed model seems inoperative foséhealues of. The results
of the paper are summarized in Table 1 whex@ONS denotes the consensus in the
presence of up toprocess crashes.

Interestingly, this study shows that there are two coritrgsinpossibility results in
asynchronous read/writecrashn-process systems. Consensus is impossible as soon as
t > 0, while t-immediate snapshot is impossible as soohas — 1.

As a final remark, some computability problems remain opena example, is it
possible to implement &S object from(2¢ — n + 2)-Set agreement?
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