
Communication Problems for Mobile Agents
Exchanging Energy

Jurek Czyzowicz1, Krzysztof Diks2, Jean Moussi1, and Wojciech Rytter2

1 Département d’informatique, Université du Québec
en Outaouais, Gatineau, Québec, Canada

2 Faculty of Mathematics, Informatics and Mechanics,
University of Warsaw, Warsaw, Poland [diks,rytter]@mimuw.edu.pl

[jurek,Jean.Moussi]@uqo.ca

Abstract. A set of mobile agents is deployed in the nodes of an edge-weighted net-
work. Agents originally possess amounts of energy, possibly different for all agents.
The agents travel in the network spending energy proportional to the distance tra-
versed. Some nodes of the network may keep information which is acquired by the
agents visiting them. The meeting agents may exchange currently possessed infor-
mation, as well as any amount of energy. We consider communication problems
when the information initially held by some network nodes have to be communi-
cated to some other nodes and/or agents. The paper deals with two communication
problems: data delivery and convergecast. These problems are posed for a central-
ized scheduler which has full knowledge of the instance. It is already known that,
without energy exchange, both problems are NP-complete even if the network is
a line. In this paper we show that, if the agents are allowed to exchange energy,
both problems have linear-time solutions on trees. On the other hand for general
undirected and directed graphs we show that these problems are NP-complete.

Keywords: mobile agents, data delivery, convergecast, energy exchange

Format: novel research contribution

1 Introduction

A set of n agents is placed at nodes of an edge-weighted graph G. An edge weight represents its
length, i.e., the distance between its endpoints along the edge. Initially, each agent has an amount
of energy (possibly distinct for different agents).

Agents walk in a continuous way along the network edges using amount of energy proportional
to the distance travelled. An agent may stop at any point of a network edge (i.e. at any distance
from the edge endpoints, up to the edge weight). Initially, at the nodes of the graph is stored the
information (different for each node), which may be collected by agents visiting such nodes. Each
agent has memory in which it can store all collected information.

When two agents meet, one of them can transfer a portion of currently possessed energy to
another one. Moreover, two meeting agents exchange their currently possessed information, so that
after the meeting both agents keep in their memories the union of the information previously held
by each of them.

We consider two problems:

1. Data delivery problem: Given two nodes s, t of G, is it possible to transfer the initial packet
of information placed at node s to node t?

2. Convergecast problem: Is it possible to transfer the initial information of all nodes to the
same agent ?

We will look for schedules of agent movements which will not only result in completing the
desired task, but also attempt to maximize the unused energy. We call such schedules optimal. We
conservatively suppose that, whenever two agents meet, they automatically exchange the entire
information they hold. This information exchange procedure is never explicitly mentioned in our
algorithms, supposing, by default, that it always takes place when a meeting occurs.

1.1 Our results

We show that both communication have linear time algorithms on trees. On the other hand, for
general undirected and directed graphs we show that these problems are NP-complete.

1.2 Related work

Recent development in the network industry triggered the research interest in mobile agents com-
puting. Several applications involve physical mobile devices like robots, motor vehicles or various
wireless gadgets. Mobile agents are sometimes interpreted as software agents, i.e., programs migrat-
ing from host to host in a network, performing some specific tasks. Examples of agents also include
living beings: humans (e.g. soldiers or disaster relief personnel) or animals. Most studied problems
for mobile agents involve some sort of environment search or exploration (cf. [3,8,10,11,12]). In the
case of a team of collaborating mobile agents, the challenge is to balance the workload among the
agents in order to minimize the exploration time. However this task is often hard (cf. [13]), even in
the case of two agents in a tree, [6]. The tree exploration by energy-constrained mobile robots has
been considered in [10].

The task of convergecast is important when agents possess partial information about the network
(e.g. when individual agents hold measurements performed by sensors located at their positions)
and the aggregate information is needed to make some global decision based on all measurements.
The convergecast problem is often considered as a version of the data aggregation question (e.g.

1

[16,17]) and it has been investigated in the context of wireless and sensor networks, where the energy
consumption is an important issue (cf. [4,15]).

The power awareness question has been studied in different contexts. Energy management of (not
necessarily mobile) computational devices has been studied in [2]. To reduce energy consumption
of computer systems the methods proposed include power-down strategies (see [2,5,14]) or speed
scaling (cf. [18]). Most of research on energy efficiency considers optimization of overall power used.
When the power assignments are made by the individual system components, similar to our setting,
the optimization problem involved has a flavor of load balancing (cf. [7]).

The problem of communication by energy-constrained mobile agents has been investigated in
[1]. The agents of [1] all have the same initial energy and they perform efficient convergecast and
broadcast in line networks. However the same problem for tree networks is proven to be strongly
NP -complete in [1].

The closely related problem of data delivery, when the information has to be transmitted between
two given network nodes by a set of energy constrained agents has been studied in [9]. This problem
is proven to be NP -complete in [9] already for line networks, if the initial energy values may be
distinct for different agents. However, in the setting studied in [1,9], the agents do not exchange
energy. In the present paper we show that the situation is quite different if the agents are allowed
to transfer energy between one another.

2 The line environment

In this section we start with a line environnement and suppose that we are given a collection of
agents {1, 2, . . . , n} on the line. Each agent i is initially placed at position ai on the line and has
initial energy ei.

2.1 Data delivery on the line

We start with the delivery problem from point s to t. Assume that ai < aj for i < j and s < t.
Indeed, in this case w.l.o.g. we may replace many agents starting at the same point may by a single
agent holding the sum of their energy amounts.

The problem can be immediately reduced to the situation s ≤ a1, an ≤ t. Otherwise, the agents
on the left-hand side of s (starting from the leftmost one) walk left-to-right collecting energy of the
encountered other agents. If some energy can be brought this way to s, we obtain an extra agent
which will start at s. Symmetrically, the agents on the right-hand side of t act in order to possibly
bring the maximal amount of energy to point t. It is easy to see that this is the best use of agents
placed outside the interval [s, t]. Consequently, we may assume s ≤ a1, an ≤ t.

Our first algorithm is only a decision version. Its main purpose is to show how certain useful
table can be computed; all subsequent algorithms are based on computing similar type of tables.

Consider the partial delivery problem Di, in which agents larger than i are removed, together with
their energy, and the goal is to deliver the packet from point a1 to point ai. We say that the problem
Di is solvable iff such a delivery is possible.

We define the following table
−→
∆ :

– If Di is not solvable then
−→
∆ i = −δ, where δ is the minimal energy which needs to be added to

ei (to the energy of i-th agent) to make Di solvable.

2

– If Di is solvable then
−→
∆ i is the maximal unused energy which can remain in point ai after

delivering the packet from a1 to ai. Note that it is possible that
−→
∆ i > ei since during delivery

the unused energy of some other agents can be moved to point ai.

Assume that points s and t are the starting points s = a0 and t = an+1 of virtual dummy agents
0 and n + 1, respectively, each having zero energy. Therefore, we may assume that the original
positions of the agents are s = a0 ≤ a1 < a2 < a3 < . . . < an ≤ t = an+1.

We have the following decision algorithm.

ALGORITHM Delivery-Test-on-the-Line ;

1. A := e0 = 0; a0 := s; an+1 := t; en+1 := 0;

2. for i = 1 to n+ 1 do
3. d := ai − ai−1;

4. if A ≥ d then A := A− d
5. else if A ≥ 0 then A := −2(d−A)

6. else A := A− 2d;

7. A := A+ ei;
−→
∆i := A;

8. return (A ≥ 0) ;

Example 1. Assume

[a0, a1, . . . , a4] = [0, 10, 20, 30, 40, 50], [e0, e1, . . . e4] = [0, 24, 10, 40, 0].

Then (assuming, by convention,
−→
∆0 = 0, see also Figure 1) we have

−→
∆ = [0, 4, −2, 18, 8].

Remark. The values of
−→
∆ i are not needed to solve the decision-only version. However they will be

useful in creating the delivery schedule and also in the convergecast problem.

Lemma 1. The algorithm Delivery-Test-on-the-Line correctly computes the table
−→
∆ (thus it

solves the decision version of the delivery problem) in linear time.

Proof. We prove by induction on i, that the value of
−→
∆ i is correctly computed in line 7 of the

algorithm.
Suppose first the case i = 1. In the case a0 = a1, as A = e0 = 0, in lines 4 and 7 we compute the

value of A =
−→
∆1 = e1, which is correct as agent 1 does not need to use any energy to pick up the

packet at point a0. Otherwise, if a0 < a1 we have A = 0 and A < d, so lines 5 and 7 are executed,
in which case we have A =

−→
∆1 = e1 − 2d. As agent 1 needs to cover distance d in both directions

to bring the packet to point a1 this is correct, independently whether the computed value negative
or not.

Suppose now, by inductive hypothesis, that the algorithm computed correctly A =
−→
∆ i−1 in the

previous iteration. There are three cases:

Case 1 (line 4 of the algorithm). The instance Di−1 was solvable and after moving the packet from
a1 to ai−1 the maximal remaining energy was

−→
∆ i−1. As in this case we have

−→
∆ i−1 = A ≥ d, the

energy
−→
∆ i−1 is sufficient to move the packet from ai−1 to ai. Consequently, we spent d energy

to travers the distance d in one direction and we have
−→
∆ i =

−→
∆ i−1−d+ei as correctly computed

in lines 4 and 7.

3

Case 2 (line 5). The instance Di−1 was still solvable but after moving the packet from a1 to ai−1
the remaining energy

−→
∆ i−1 is not sufficient to reach ai without help from agents to the right of

ai−1. Then the (i − 1)-st agent moves only one-way by distance
−→
∆ i−1. The remaining distance

d−−→∆ i−1 to point ai should be covered both-ways from ai. Hence we need to use the amount of
2(d−−→∆ i−1) energy, which is expressed by statement 5. The value of

−→
∆ i is computed correctly

independently whether the addition of ei makes it positive or not.

Case 3 (line 6). In this case the instance Di−1 was not solvable, i.e. the agents 1, 2, . . . , i−1 could
not deliver the packet to point ai−1. Consequently, the interval [ai−1, ai] has to be traversed
entirely in both direction and we obtain

−→
∆ i =

−→
∆ i−1 − 2d + ei, which is correctly computed in

lines 6 and 7.

The cases correspond to the statements in the algorithm, and show its correctness. This completes
the proof.

Once the values of
−→
∆ i are computed, the schedule describing the behaviour of each agent is implicitly

obvious, but we give it below for reference. Note that the action of each agent ai is started once the
process involving lower-numbered agents has been completed. We are not interested in this paper
in finding the shortest time to complete the schedule (allowing agents to work in parallel).

ALGORITHM Delivery-Schedule-on-the-Line ;
{ Delivering packet from s to t }
pos := s;
for i = 1 to n do

if
−→
∆i ≥ 0 and pos < ai then
1. The i-th agent walks left collecting energy of all encountered

agents until arriving at the packet position. It picks up the packet.
2. The i-th agent walks right collecting energy of all encountered

agents until exhausting its energy or reaching t.
3. The i-th agent leaves the packet at the actual position pos.

Delivery is successful iff pos = t;

Figure 1 illustrates the execution of the above algorithm for Example 1.

0 10 20 30 4014

−→
∆1 = 4

−→
∆2 = −2

−→
∆3 = 18

−→
∆4 = 8

e0 = 0 e1 = 24 e2 = 10 e3 = 40 e4 = 0

−→
∆0 = 0

Fig. 1. Schedule of agent movements for ai’s and energies given in Example 1.

We conclude with the following theorem.

Theorem 1. In linear time we can decide if the information of any agent can be delivered to any
other agent and, if it is possible, we find the centralized scheduling algorithm which performs such a
delivery.

4

2.2 Convergecast on the line

The convergecast consists in communication in which the union of initial information of all nodes
arrives to the same agent. The convergecast problem sometimes consists in verifying whether a given
agent is a convergecast agent; other times, it has to be determined whether any such agent exists.
For energy exchanging agents, if convergecast is possible then any agent may be its target, as agents
may swap freely when meeting.

We present below the algorithm finding if convergecast is possible. We will use algorithm
Delivery-Test-on-the-Line to compute the values of

−→
∆ i as defined before, assuming that

s = a1 and t = an. Similarly we denote by
←−
∆ i the values of the energy potential at point ai

that the symmetric algorithm would compute while transferring the packet initially situated at the
point an towards the target position at ai. Therefore,

←−
∆ i equals the deficit or the surplus of energy

during the transfer of information initially held by agent n to agent i using agents i, i+ 1, · · · , n.

ALGORITHM Convergecast-on-the-Line;

1. For all i = 1, 2, · · · , n compute the values of
−→
∆i and

←−
∆i representing the

energy potentials at ai, for deliveries from a1 to ai and an to ai, respectively
2. for i = 1 to n do
3. if

−→
∆i ≥ 0 ∧

←−
∆i+1 ≥ 0 ∧

−→
∆i +

←−
∆i+1 − (ai+1 − ai) ≥ 0 then

4. return Convergecast possible;
5. return Convergecast not possible;

We have the following theorem.

Theorem 2. Algorithm Convergecast-on-the-Line in O(n) time solves the convergecast prob-
lem.

Proof. The convergecast is possible if and only if the information of agent a1 and the information
of agent an may be transferred to the same point of the line. This is equivalent to the existence
of a pair of agents i and i + 1, such that transferring the information from point a1 to ai using
agents 1, 2 · · · , i results in a surplus of energy brought to point ai, as well as that transferring the
information from point an to ai+1 using agents n, n − 1 · · · , i + 1 results in a surplus of energy
brought to point ai+1. Moreover, the sum of these two surpluses of energy must be sufficient to
complete a walk along the entire segment [ai, ai+1] permitting agents i and i + 1 to meet. This is
exactly what is verified at line 3 of algorithm Convergecast-on-the-Line.

An interested reader may observe, that the condition of the if clause from line 3 may be simplified
to
−→
∆ i +

←−
∆ i+1 − (ai+1 − ai) ≥ 0 as in such case the convergecast is also possible although the

convergecast point may not be inside the interval [ai, ai+1]. However, the current condition at line 3
permits to identify all points of the environment to which the union of all node information may be
transported. We call such points convergecast points. Indeed, if

−→
∆ i +

←−
∆ i+1 − (ai+1 − ai) = 0, then

there exists a unique convergecast point inside the interval [ai, ai+1]. The surplus of energy permits
to deliver the convergecast information to an interval of the line larger than a single point. We have
the following Corollary.

Corollary 1. If the condition in line 3 of algorithm Convergecast-on-the-Line is true, then
the set of convergecast points of the line equals [ai+1 −

←−
∆ i+1, ai +

−→
∆ i].

5

3 The tree environment

3.1 Data delivery in the tree

The technique developed for delivery in lines can be extended easily to delivery in undirected trees.
In this case, the agents are placed at the nodes of the tree. Observe that from the original tree we
can remove subtrees which do not contain s, t or any agents. Consequently, we obtain a connected
tree whose every leaf either contains s or t or an initial position of some agent.

The delivery problem for a tree is easily reducible to the case of a line.

Theorem 3. We can solve delivery problem and construct delivery-scenario on the tree in linear
time.

Proof. Consider the path π in the tree T connecting s with t. Suppose we remove from T all edges
of path π. The tree splits into several subtrees anchored at nodes of π. For each such subtree we
direct all edges towards the root, which is a node of π. The agents initially present at the leaves
of such trees are walking up along the directed paths towards their roots accumulating energies at
intermediate nodes. To avoid having two agents walking along the same edge it is sufficient to move
agents present at leaves only and remove every such edge after the move is made. Agents having
energy use it during their walk bringing the remainder to the intermediate nodes. Agents with zero
energy are moved freely bringing no energy. The process terminates when the subtree is reduced to
a single root belonging to path pi. This way we optimize the energy that can be brought to path pi.
The problem of the delivery on the tree is now reduced to the delivery on the line π. Consequently,
all steps of this construction may be computed in linear time. This completes the proof.

3.2 Convergecast on the tree

In this section we extend to the case of trees the basic ideas developed for the problem of convergecast
for the line environment. The tables

←−
∆ and

−→
∆ for lines were computed locally, looking only at

neighboring nodes. Simiarly, the values of the corresponding table
−→
∆ for a node in a tree is computed

looking at the neighbors of this node. However, as the flow of the information passing through node
v can be made in dv directions, where dv is the degree of v, for each node v we will compute
dv different values of ∆ . For this purpose, though the input tree is undirected, we will consider
direction of edges. For each undirected edge (u, v) we consider two directed edges u → v, v → u.
We define the subtree Tv→u as the connected component containing v and resulting by removing
from T the edge (v, u), see Figure 2. Observe that at the moment of convergecast, there are two
agents meeting at a point of some edge, that we call convergecast point, where these agents start
possessing the initial information of all nodes.

T2 T2

v v

u u
u

v

T1 T1

Fig. 2. Testing if there is a convergecast point on the undirected edge (u, v) is reduced to computation of the costs
∆u→v and ∆v→u of moving all packets in the trees T2 = Tu→v and T1 = Tv→u.

6

In order to compute all needed values of ∆, for each directed edge u → v of the tree we define
∆u→v as the energy potential of moving all packets from the subtree Tu→v to its root u without
interacting with any node outside Tu→v. More exactly, if ∆u→v ≥ 0, then it represents the maximal
amount of energy that can be delivered to u, together with all data packets originated at the nodes
of Tu→v. Observe that, if Tu→v initially does not contain any agents, then ∆u→v equals twice the
sum of weights of all edges of Tu→v. Indeed, in such case, the delivery must be performed by an agent
starting at u and performing the DFS traversal of Tu→v. If Tu→v initially contains some agents, the
value of ∆u→v is smaller, but always equal at least the sum of weights of its edges. If ∆u→v < 0
then −∆u→v is the minimal amount of energy that we need to deliver to u by some agent, initially
outside Tu→v, so that this agent can bring to node u all data packets from the nodes of Tu→v. In
both cases, will be used all agents initially present inside Tu→v as well as their entire energy. We
propose the following algorithm.

ALGORITHM Convergecast-on-the-Tree(T);

1. X := the set of directed edges of T ;
2. while X 6= ∅ do
3. Choose u→ v ∈ X, such that for each x→ u, x 6= v =⇒ x→ u /∈ X
4. Compute ∆u→v; Remove u→ v from X;
5. for each directed edge (u, v) ∈ V do
6. if (∆u→v ≥ 0) ∧ (∆v→u ≥ 0) ∧ (∆u→v + ∆v→u ≥ weight(u, v))

7. then return Convergecast is possible
8. return Convergecast is not possible

The values of ∆u→v are computed by the following procedure.

PROCEDURE Compute ∆u→v;
1. ∆u→v := eu; {initial energy of node u}
2. for each undirected edge x→ u, such that x 6= v do
3. if ∆x→u ≥ weight(x, u)

4. then ∆u→v := ∆u→v + ∆x→u − weight(x, u)

5. else if ∆x→u > 0

6. then ∆u→v := ∆u→v + 2 ∗ (∆x→u − weight(x, u))

7. else ∆u→v := ∆u→v + ∆x→u − 2 ∗ weight(x, u)

We have the following theorem:

Theorem 4. Algorithm Convergecast-on-the-Tree in linear time solves the convergecast
problem for trees.

Proof. We show first the following claim:
Claim:, The while loop from line 2 of the algorithm calls the function Compute ∆u→v in line
4 for all undirect edges of T and the value of ∆u→v is correctly computed for every directed edge
u→ v.

The proof of the claim goes by induction on the consecutive iterations of the for loop from line
2. Consider first node u which is a leaf in T . The terminal edge u → v of any such node may be
taken in the first iteration of the for loop from line 2. As no iteration of the for loop from line 4

7

is ever executed for u → v and the tree Tu→v is composed of a single node, we obtain correctly
∆u→v = eu, i.e. the initial energy of node u.

Consider now a non-terminal node u. Let v1, v2, · · · , vp be all nodes adjacent to u, such that
vi 6= v, for i = 1, · · · , p. Note that at some point we have (vi, u) /∈ X, for all i = 1, · · · , p and the
values of ∆vi→u for all i = 1, · · · , p have been computed. Observe that, bringing packets from all
vi 6= v, i = 1, · · · , p to u needs to be done across the respective edges vi → u, sometimes bringing
the unused energy to u and other times using some energy from ∆u→v to traverse twice edge (vi, u),
or its portion, by an agent coming from u.

Take any vi and suppose first that ∆vi→u ≥ weight(vi, u). Then by inductive assumption, the
agents present at Tvi→u can perform the convergecast to vi bringing there the amount of ∆vi→u

extra energy. This energy is sufficient to transfer all packets of Tvi→u through edge (vi, u) and
the remaining amount of ∆vi→u − weight(vi, u) energy is accumulated at ∆u→v, which is correctly
computed at line 4 of procedure Compute ∆u→v.

Suppose now, that ∆vi→u ≤ 0. In order to bring all packets of Tvi→u to u, an agent present at
u must traverse the edge u → vi, bring the packets to node using −∆vi→u extra energy and then
traverse the edge (u, vi) in the opposite direction vi → u. For this purpose is needed the extra energy
of −∆x→u + 2 ∗ weight(x, u), which is correctly suppressed from ∆u→v at line 7 of the procedure.

Consider now the remaining case when 0 < ∆vi→u < weight(vi, u). In this case, all packets of
Tvi→u are brought to node vi by some agent initially present within Tvi→u, but this agent does not
have enough energy to traverse edge vi → u by itself. Such agent will use its entire energy of ∆vi→u

to traverse a portion of edge vi → u and some other agent need to come from u and to traverse the
other portion in both directions in order to transfer the packets to u. The energy needed by the
second agent equals 2 ∗ (weight(vi, u)−∆vi→u), which is correctly suppressed from ∆u→v at line 6
of the procedure. This completes the proof of the claim.

To complete the proof, consider the moment when in an optimal convergecast algorithm one
agent obtains the union of the initial information of all nodes of the network. This happens while
two agents meet on some edge (u, v), one of them carrying the union of information from the subtree
Tu→v, and the other one - from the subtree Tv→u. These agents need to have enough positive energy
to meet within the edge (u, v). This is equivalent to the condition tested in line 6 of the algorithm.

The condition from line 6 of algorithm Convergecast-on-the-Tree permits to decide only
if the convergecast is possible. However, similarly to the line case, an interested reader may observe
that one can easily identify the set of all convergecast points. For this purpose we define the set of
Du,v(d) containing a subset of points from the edges of T . Consider a point p and the simple path
Π(u, p) of T joining p with u. We define p /∈ Du,v(d) if the path Π(u, p) goes in the direction of
edge (u, v) and its length exceeds d, i.e. |Π(u, p)| > d. All other points of T belong to Du,v(d). We
have the following corollary.

Corollary 2. If the condition in line 6 of algorithm Convergecast-on-the-Tree is true, then
the set of all convergecast points of the tree equals Du,v(∆u→v) ∩Dv,u(∆v→u).

4 NP-Completeness for digraphs and graphs

We use the following NP-complete problem:

Integer Set Partition (ISP): Given set X = {x1, x2, . . . , xn} of positive integer values verify
whether X can be partitioned into two subsets with equal total sums of values.

We have the following theorem.

8

Theorem 5. The delivery and convergecast problems are NP-complete for general directed graphs.

Proof. Denote E =
∑n

i=1 xi. Given an instance of the ISP problem, we construct the following
graph GX (see Figure 3). The set of n + 3 nodes of GX consists of three nodes s, t, a and the
set of nodes V = {v1, v2, . . . , vn}. Each node vi contains a single agent i having an initial energy
e = xi, for i = 1, 2, . . . , n. The weights of edges outgoing from nodes of V are w(vi → s) = xi/3
and w(vi → a) = 0 for i = 1, 2, . . . , n. Moreover we have w(s → a) = E/3 and w(a → t) = E/2.
Consider a delivery from s to t. W.lo.g. we can suppose that this is done by some agent i, which

x1

3

x2

3

xn

3

s
a tv2(e2 = x2)

vn(en = xn)

v1(e1 = x1)

E/2

E/3

0

0

0

GX

Fig. 3. Delivery from s to t is possible iff the set of weights xi can be partitioned into two sub-sets of the same sum.

must traverse the path vi → s→ a→ t. As no agent can do it using only its own energy (otherwise
xi ≥ 5E/6 and the ISP trivially has no solution), some other agents of the collection must walk to
s and some other ones must go directly to a, in order to deliver to agent i additional energy needed
to complete its path vi → s→ a→ t.

Assume that X1, X2 are the sets of agents which directly move to s and a, respectively. Let

α =
∑
i∈X1

xi, β =
∑
i∈X2

xi

Hence the energy delivered to s, unused by the agents X1 incoming to s, is 2
3α. As this energy must

be sufficient to traverse at least edge s→ a, we have

2

3
α ≥ E/3 (1)

Consider now the maximal energy, which may be available to agent i at point a. It is equal to the
sum of energy β, which is brought to point a by agents X2, and the energy unused by agent i,
ending its traversal of edge s → a, which equals 2α/3 − E/3. As the sum of these energies must
suffice to traverse edge a→ t of weight E/2 and α+ β = E we have

E

2
≤ β +

2

3
α− E/3 =

1

3
α+

2

3
β =

E

3
+

1

3
β (2)

From (1) we have α ≥ E/2 and (2) leads to β ≥ E/2, which implies α = β = E/2.
Consequently, the delivery from s to t in graph GX is possible if and only if the given instance

of the integer partition problem is solvable. This implies NP -completeness of the delivery problem.
As t is the only node having paths incoming from all other nodes, the convergecast for GX

implies the delivery from s to t, hence the convergecast problem is also NP -complete.

9

Theorem 6. The delivery and convergecast problems are NP-complete for general undirected
graphs.

E + x1

3

E + x2

3

E + xn

3

s
a tv2(e2 = E + x2)

vn(en = E + xn)

v1(e1 = E + x1)

E/2

E/3

E

E

E

HX

Fig. 4. The undirected version of the graph from Figure 3. The weights of nodes vi and lengths of edges incident to
these nodes are increased by E.

Proof. Consider graph HX - an undirected version of the graph from the previous proof (see Fig-
ure 4). Increase the energy of every agent by E, i.e. agent i, initially placed at node vi, now has
energy E+xi, for i = 1, 2, . . . , n. Moreover increase by E the weight of each edge, which is incident
to node vi, i.e. w(s, vi) = E + xi/3 and w(vi, a) = E, for i = 1, 2, . . . , n.
Delivery. Consider delivery from s to t. Observe that no edge incident to vi, for i = 1, 2, . . . , n, can
be used twice. Indeed, in order to transfer energies between agents they have to meet moving from
their initial positions. However, at the moment of such meeting the sum of the remaining energies
is smaller than E, which does not permit to traverse any edge incident to xi for the second time.
Clearly traversing directed edges a→ s and t→ a is also useless, hence the delivery from s to t in
graph HX is equivalent to the respective delivery in GX .
Convergecast. If we consider t as the convergast node, the conergecast problem is equivalent to
the delivery from s to t, which implies its NP -completeness.

5 Final Remarks

It is somewhat remarkable that, without energy exchange, even the simplest problem of data delivery
is NP-complete in the simplest environment of the line, while, as we have shown in this paper,
considered communication problems with energy exchange are solvable in linear time even for tree
networks. On the other hand, it is not surprising that energy exchange in general graphs does not
help and the problems are NP-complete.

There remain interesting open problems using energy-exchanging mobile agents for other com-
munication protocols, like broadcast or gossiping. Observe that, in the case of data delivery and
convergecast, each point of the tree is traversed at least once and at most twice (once in each di-
rection) in the optimal solutions. However, in the case of broadcast, i.e. when the information of
one node must be delivered to all other nodes of the tree, some tree edges need to be traversed by
several agents. E.g., this is the case of weighted star with many agents starting at the same leaf.
The problem of gossiping is even more involved.

An interested reader may try to extend the proposed solutions to the case when the data delivery
needs to be performed from a given subset of nodes into another subset. Further possible extension
is to realize one-to-one delivery using a configuration of energy-exchanging agents, i.e. when each of
n source nodes must deliver to a specific target.

10

References

1. J. Anaya, J. Chalopin, J. Czyzowicz, A. Labourel, A. Pelc, Yann Vaxés: Collecting Information by Power-Aware
Mobile Agents. Proc. DISC (2012), pp. 46-60.

2. S. Albers: Energy-efficient algorithms. Comm. ACM 53(5), (2010), pp. 86-96.
3. S. Albers, M.R. Henzinger. Exploring unknown environments. SIAM J. on Comput., 29 (4), pp.1164-1188.
4. V. Annamalai, S. K. S. Gupta, and L. Schwiebert, On Tree-Based Convergecasting in Wireless Sensor Networks,

Wireless Communications and Networking, IEEE, vol. 3 (2003), pp. 1942 - 1947.
5. J. Augustine, S. Irani, C. Swamy. Optimal powerdown strategies. SIAM J. Comput. 37 (2008), pp. 1499-1516.
6. I. Averbakh, O. Berman. A heuristic with worst-case analysis for minimax routing of two traveling salesmen

on a tree. Discr. Appl. Math., 68 (1996), pp. 17-32.
7. Y. Azar. On-line load balancing. In: A. Fiat and G.Woeginger, Online Algorithms: The State of the Art,

Springer LNCS 1442, (1998), pp. 178-195.
8. R.A. Baeza-Yates, R. Schott: Parallel Searching in the Plane. Comput. Geom. 5, (1995), pp.143-154.
9. J. Chalopin, R. Jacob, M. Mihalak, P. Widmayer: Data Delivery by Energy-Constrained Mobile Agents on a

Line. Proc. ICALP (2), (2014), pp. 423-434.
10. S. Das, D. Dereniowski, C. Karousatou. Collaborative Exploration by Energy-Constrained Mobile Robots. In

Proc. of SIROCCO (2015), pp. 357-369.
11. M. Dynia, M. Korzeniowski, C. Schindelhauer. Power-aware collective tree exploration. In Proc. of ARCS

(2006), pp. 341-351.
12. P. Fraigniaud, L. Gasieniec, D. Kowalski, A. Pelc. Collective tree exploration. In Proc. LATIN, (2004), pp.

141-151.
13. G. Frederickson, M. Hecht, C. Kim. Approximation algorithms for some routing problems. SIAM J. on Comput.,

7 (1978), pp. 178-193.
14. S. Irani, S.K. Shukla, R. Gupta. Algorithms for power savings. ACM Trans. on Algorithms, Vol. 3, No. 4,

Article 41, (2007).
15. A. Kesselman and D. R. Kowalski, Fast distributed algorithm for convergecast in ad hoc geometric radio

networks, Journal of Parallel and Distributed Computing, Vol. 66, No. 4 (2006), pp. 578-585.
16. L. Krishnamachari, D. Estrin, S. Wicker. The impact of data aggregation in wireless sensor networks. ICDCS

Workshops, (2002), pp. 575-578.
17. R. Rajagopalan, P. K. Varshney, Data-aggregation techniques in sensor networks: a survey Comm. Surv. and

Tutorials, Vol. 8, No. 4, (2006), pp. 48 - 63.
18. F.F. Yao, A.J. Demers, S. Shenker, A scheduling model for reduced CPU energy. In Proc. of 36th FOCS (1995),

pp. 374-382.

11

