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Abstract

This paper surveys recent results on fault-tolerant consensus in message-passing
networks. We focus on two categories of works: (i) new problem formulations (in-
cluding input domain, fault model, network model...etc.), and (ii) practical applica-
tions. For the second part, we focus on Crash Fault-Tolerant (CFT) systems that
use Paxos or Raft, and Byzantine Fault-Tolerant (BFT) systems. We also briefly
discuss Bitcoin, which can be related to solving Byzantine consensus in anonymous
systems.
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1 Introduction

Fault-tolerant consensus has received significant attentions over the past three decades [19, 84]
since the seminal work by Lamport, Shostak, and Pease [102, 76]. The problem has been studied
extensively – topics include solving consensus and/or proving time/communication complexity
under different model assumptions, communication mechanisms, and correctness conditions.
Please refer to [19, 84] for some classic results on fault-tolerant consensus. In this paper, we
survey recent efforts on fault-tolerant consensus in message-passing networks. References [46,
104, 31, 84, 19] have presented abundant discussions on this topic, especially, on the techniques
and comparison of different consensus algorithms. To complement theses prior works, we present
this survey from two new angles:

• Exploration of New Problem Formulations: Plenty of different consensus problems have
been introduced in the past ten years for solving more complicated tasks and accommo-
dating different systems and networks requirements. New problem formulations include
additional correctness properties, different fault models, different communication networks,
or different input/output domains. For this part, we focus on the comparison of recently
proposed problem formulations.

• Exploration of Practical Applications: Since Castro and Liskov published their seminal
work, PBFT (Practical Byzantine Fault-Tolerance) [36], significant effort has been devoted
to make Byzantine Fault-Tolerance (BFT) practical and efficient. We will discuss works
on improving BFT. Moreover, due to the recent popularity of Bitcoin [2], industry and
academia have renewed interested in Byzantine consensus. We also survey relevant results.
For the second part, we focus on the practical challenges and applications.

1.1 Classic Definitions of Fault-tolerant Consensus

We consider the consensus problem in a point-to-point message-passing network, which is mod-
eled as an undirected graph. Without specifically mentioning, the communication network is
assumed to be complete in this survey, i.e., each pair of nodes can communicate with each other
directly. In the fault-tolerant consensus problem [19, 84], each node is given an input, and after
a finite amount of time, each fault-free node should produce an output – consensus algorithms
should satisfy the termination property. Additionally, the algorithms should also satisfy appro-
priate validity and agreement conditions. There are three main categories of consensus problems
regarding different agreement properties:

1. Exact consensus [102, 73]: fault-free nodes have to agree on exactly the same output.

2. Approximate consensus [53, 55]: fault-free nodes have to agree on “roughly” the same
output – the difference between outputs at any pair of fault-free nodes is bounded by a
given constant ε (ε > 0) of each other.

3. k-set consensus [41, 49]: the number of distinct outputs at fault-free nodes is at most k.
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Validity property is also required for consensus algorithms to produce meaningful outputs,
since the property defines the acceptable relationship between inputs and output(s). Typical
validity includes: (i) strong validity : output must be an input at some fault-free node, (ii) weak
validity : if all fault-free nodes have the same input v, then v is the output, and (iii) validity (for
approximate consensus): output must be bounded by the input at fault-free nodes. A consensus
algorithm is said to be correct if it satisfies termination, agreement and validity properties given
that certain number of nodes may become faulty. In this paper, we focus on three types of node
failures – Byzantine, crash, and omission faults. The only exception is Section 2.3 where we
focus on link faults.

The other key component of the consensus problem definition is about system synchrony, i.e.,
a model for the relative speed of nodes and the network. There are also three main categories
[19, 84, 54, 28]:

1. Synchronous systems: each node proceeds in a lock-step fashion, and there is a known
upper bound on message delay.

2. Partially synchronous systems: there exists a partial synchronous period from time to
time. In such a period, fault-free nodes and the network stabilize and behave (more)
synchronously.1

3. Asynchronous systems: no known bounds exist on nodes’ processing speed or message
delays.

In Section 2, we discuss papers that defined new consensus problems which either assume
variants of aforementioned properties or introduce new correctness properties. The main purpose
is to give a big picture on the problem domains that have been explored in the literature.

1.2 Practical Applications of Fault-tolerant Consensus

In Section 3, we discuss recent efforts focusing on the practical applications. Consensus is an
important primitive that has wide applications such as state-machine replication (SMR) [110],
and distributed storage. We address three main applications: (i) crash fault-tolerant systems
based on variants of Paxos [73, 74] and Raft [97], (ii) Byzantine fault-tolerant (BFT) systems,
and (iii) Bitcoin [94, 95] a popular cryptocurrency. For part (ii), we discuss several techniques
to improve the performance, including speculative execution, execution/agreement separation,
hardware-based solution, dynamic switch among abortable components, and relaxed properties.
For part (iii), we focus on the comparison of Bitcoin and Byzantine consensus/BFT systems.

2 Exploration of New Problem Formulations

Researchers have studied the consensus problems under more generalized assumptions. In this
section, we focus on the following generalizations: (i) input/output domain, (ii) communication

1Note that there are also other definitions of partial synchrony. We choose this particular definition, since
many BFT systems only satisfy liveness under this particular definition. Please refer to [54, 15] for more models.
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network and synchrony assumptions, (iii) link fault models, and (iv) properties other than
validity and agreement, such as early-stopping and one-step properties. In this section (with
the exception on discussing link fault models), we assume that among n nodes in the system,
up to f of them may become Byzantine faulty or crash. Byzantine faulty nodes may have an
arbitrary behavior.

2.1 Input/Output Domain

Multi-Valued Consensus In the original exact Byzantine consensus problem [102, 76], both
input and output are binary values. Later, [83, 124] proposed the multi-valued version in which
input may take more than two real values. Recently, multi-valued consensus received renewed
attentions and researchers proposed algorithms that achieve (asymptotically) optimal communi-
cation complexity (number of bits transmitted) in both synchronous and asynchronous systems.
Surprisingly, for L-bit input, these algorithms achieve (asymptotic) communication complexity
of O(nL) bits when L is large enough.

In synchronous systems, Fitzi and Hirt proposed a Byzantine multi-valued algorithm with
small error probability [57]. The main idea is to reduce the inputs to much smaller messages
using universal hash function. (Classic) Byzantine consensus is then performed using these
reduced hashed values as inputs. Finally, consensus is achieved by obtaining the input value
from nodes that have the same hashed values (if there is enough number of such nodes) [57].
Later, Liang and Vaidya combined a different reduction technique (that divides an input into a
large number of small values) with novel coding technique to construct an error-free algorithm
in synchronous systems [80]. One key contribution is to introduce a lightweight fault detection
(or fault diagnosis) mechanism using coding [80]. Such fault diagnosis works because the inputs
are divided into batches of small values. In each batch, either consensus (on the small value
of this batch) can be achieved with small communication complexity or some faulty nodes will
be identified. Once all faulty nodes are identified, then consensus on the remaining batches
becomes trivial. Since number of faulty node is bounded, consensus on most batches can be
achieved with small communication complexity [80].

Subsequently, variants of reduction technique were applied to solve consensus problems with
large inputs in asynchronous systems. References [101, 100] provided multi-valued algorithms
with small error probability. Patra improved the results and proposed an error-free algorithm
[99]. These algorithms terminate with overwhelming probability; however, the expected time
complexity is large because these algorithms first divide inputs to small batches and achieve
consensus on each batch with various fault diagnosis mechanisms. Typically, to achieve opti-
mal communication complexity, the number of batches is in the same order of L. In contrast,
Mostefaoui and Raynal focused on a different goal [92]. They proposed an asynchronous con-
sensus algorithm by reducing multi-valued consensus to binary consensus, and their algorithm
requires O(n2) messages (i.e., O(n2L) bits) and constant expected time complexity. The pro-
posed algorithm relies on two components: Rabin’s common coin [103] and an all-to-all broadcast
communication abstraction to exchange binary values among fault-free nodes [92].

Multi-valued consensus has also been studied under the crash fault model in which nodes
may crash; otherwise, they follow the algorithm specification. Mostefaoui et al. considered
multi-valued consensus algorithm when nodes may suffer crash failures in both synchronous
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and asynchronous systems [11]. Later, Zhang and Chen proposed a more efficient multi-valued
consensus algorithm in asynchronous systems with crash faults [135]. King and Saia studied a
slight different problem called almost-everywhere Byzantine agreement in synchronous systems
with a strong adversary that corrupt nodes adaptively [71]. The proposed algorithm has a small
error probability.

High-Dimensional Input/Output In the Byzantine vector consensus (or multi-dimensional
consensus) [86, 126], each node is given a d-dimensional vector of reals as its input (d ≥ 1), and
the output is also a d-dimensional vector. In complete networks, the recent papers by Mendes
and Herlihy [86] and Vaidya and Garg [126] addressed approximate vector consensus in the
presence of Byzantine faults.2 These papers yielded lower bounds on the number of nodes, and
algorithms with optimal resilience in asynchronous [86, 126] as well as synchronous systems [126].
The algorithms in [86, 126] are generalizations of the optimal iterative approximate Byzantine
consensus for scalar inputs in asynchronous systems [14]. The algorithms in [86, 126] require
sub-routines for geometric computation in the d-dimensional space to obtain the local state
in each iteration; whereas, a simple average operation suffices in [14]. Subsequent work [125]
explored the approximate vector consensus problem in incomplete directed graphs. Later, [121]
proposed the convex hull consensus problem, in which fault-free nodes have to agree on “largest
possible” polytope in the d-dimensional space that may not necessarily equal to a d-dimensional
vector (a single point). The asynchronous algorithm in [121] bears some similarity to the ones in
[86, 126, 14]; however, Tseng and Vaidya used a different communication abstraction to achieve
the “largest possible” polytope. Moreover, Tseng and Vaidya introduced a new proof technique
to prove the correctness of iterative consensus algorithms when the output is a polytope [121].

2.2 Communication Network and Synchrony

The fault-tolerant consensus problem has been studied extensively in complete networks (e.g.,
[102, 73, 19, 84, 53]) and in undirected networks (e.g., [56, 51]). In these works, any pair of
nodes can communicate with each other reliably either directly or via at least 2f + 1 node-
disjoint paths (for Byzantine faults) or f + 1 node-disjoint paths (for crash faults). Recently,
researchers revisited such assumptions and enriched the problem space in three main directions:
directed graphs, dynamic graphs, and partial synchrony.

Directed Graphs Recently, researchers started to explore various consensus in arbitrary di-
rected graphs, i.e., two pairs of nodes may not share a bi-directional communication channel,
and not every pair of nodes may be able to communicate with each other directly or indirectly.
Tseng and Vaidya [123] proved tight necessary and sufficient conditions on the underlying com-
munication graphs for achieving (i) exact crash-tolerant consensus in synchronous systems, (ii)
approximate crash-tolerant consensus in asynchronous systems, and (iii) exact Byzantine con-
sensus in synchronous systems using general algorithms. An algorithm is general if nodes are
allowed to have topology knowledge and the ability to route messages (send and receive messages

2These two papers [86] and [126] independently addressed the same problem, and developed different algo-
rithms.
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using multiple node-disjoint paths). Furthermore, unlike iterative algorithms [53, 14], the state
maintained at each node in general algorithms is not constrained. Lili and Vaidya [116] proved
tight conditions for achieving approximate Byzantine consensus using general algorithms.

Much efforts have also been devoted on iterative algorithms in incomplete graphs. In iterative
algorithms, (i) nodes proceed in iterations; (ii) the computation of new state at each node is
based only on local information, i.e., nodes own state and states from neighboring nodes; and
(iii) after each iteration of the algorithm, the state of each fault-free node must remain in the
convex hull of the states of the fault-free nodes at the end of the previous iteration. Vaidya et al.
[127] proved tight conditions for achieving approximate Byzantine consensus in synchronous and
asynchronous systems using iterative algorithms. The tight condition for approximate crash-
tolerant consensus in asynchronous systems was also proved in [120].

A more restricted fault model – called “malicious” fault model – in which the faulty nodes
are restricted to sending identical messages to their neighbors has also been explored extensively,
e.g., [77, 78, 134, 79]. LeBlanc and Koutsoukos [77] addressed a continuous time version of the
consensus problem with malicious faults in complete graphs. LeBlanc et al. [79] have obtained
tight necessary and sufficient conditions for tolerating up to f faults in the network.

The aforementioned approximate algorithms (e.g., [127, 116, 79]) are generalizations of the
iterative approximate consensus algorithm in complete network [53, 55]. However, to accom-
modate directed links, the proofs are more involved. Particularly, for sufficiency, one has to
prove that all fault-free nodes must be able to receive the non-trivial amount of a state at some
fault-free node in finite number of iterations. The exact consensus algorithms in [123] also re-
quire that some information has to be propagated to all fault-free nodes even if some nodes may
fail. Generally, the algorithms in [123] proceeds in phases such that in each phase, a group of
nodes try to send information to the remaining nodes. The algorithms are designed to maintain
validity at all time. Additionally, if no failure occurs in a phase, then agreement can be achieved.

The necessity proofs in the work on directed graphs (e.g., [127, 79, 123]) are generalizations
of the indistinguishability proof [18, 56]. The main contributions are to identify how faulty nodes
can block the information flow so that (i) fault-free nodes can be divided into several groups,
and (ii) there exists a certain faulty behavior such that different groups of fault-free nodes have
to agree on different outputs.

Dynamic Graphs Researchers have also explored consensus problem in directed dynamic
networks [24, 23, 38, 39, 111], where communication network changes over time. For synchronous
systems, Charron-Bost et al. [38, 39] solved approximate crash-tolerant consensus in directed
dynamic networks using iterative algorithms. In the asynchronous setting, Charron-Bost et al.
[38, 39] addressed approximate consensus with crash faults in complete graphs.

References [24, 111, 23] considered the message adversary, which controls the communication
pattern, i.e., the adversary has the power to specify the sets of communication graphs. Biely et
al. studied the exact consensus problem [23] and k-set consensus problem [24, 111] in dynamic
networks under message adversary, and the system is assumed to be synchronous. All the nodes
are assumed to be fault-free in [24, 111, 23]. No message is tampered in message adversary
model.

The algorithms in aforementioned papers share some similarity with their counter parts in
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complete graphs, e.g., [84, 19]. The main contributions of these papers are to identify concise
definitions of dynamic graphs so that it can be proved that useful information can be propagated
to enough number of nodes in the presence of faults.

Partial Synchrony Alistarh et al. [17] considered k-set consensus in partially synchronous
systems, and presented the (asymptotically) tight bound on the complexity of set agreement in
such systems. Milosevic et al. [88] considered permanent and transient transmission faults in
a variation of partially synchronous systems, and proved necessary and sufficient conditions on
the number of nodes n to tolerate permanent and transient transmission faults. Hamouma et
al. [63] studied the consensus problem when only a few links may be synchronous throughout
the execution of the algorithm.

Alistarh et al. [16] addressed a fundamental question of partially synchronous systems:
“For how long does the system need to be synchronous to solve crash-tolerant consensus?”
The core idea of the algorithm in [16] relies on (i) the mechanism to detect asynchrony, and
(ii) determine when to update value safely (without violating validity) based on asynchrony
detection. Bouzid et al. [28] studied the problem from a different aspect – how many eventually
synchronous links are necessary for achieving consensus. They introduced a notion of eventual
〈t+1〉bisource which characterize the necessary and sufficient timing condition to solve consensus.
This condition requires an existence of fault-free nodes such that it has an eventually synchronous
incoming links from f other fault-free nodes, and eventually synchronous outgoing links to f
other fault-free nodes. The proposed algorithm in [28] uses two novel components: a new all-
to-all communication abstraction for fault-free nodes to eventually agree on a set of values, and
an object to ensure that fault-free nodes eventually converge to a single value.

2.3 Link Fault Model

In addition to node failures, significant effort has also been devoted to the problem of achieving
consensus in the presence of link failures [40, 25, 107, 108, 109]. Santoro and Widmayer proposed
the transient Byzantine link failure model: a different set of links can be faulty at different
time [107, 108]. The nodes are assumed to be fault-free in the model. They characterized a
necessary condition and a sufficient condition for undirected networks to achieve consensus in the
transient link failure model; however, the necessary and sufficient conditions do not match: the
necessary and sufficient conditions are specified in terms of node degree and edge-connectivity,3

respectively.

Subsequently, Biely et al. proposed another link failure model that imposes an upper bound
on the number of faulty links incident to each node [25]. As a result, it is possible to tolerate
O(n2) link failures with n nodes in the new model. Under this model, Schmid et al. proved
lower bounds on number of nodes, and number of rounds for achieving consensus [109]. [122]
considered iterative consensus in arbitrary directed graphs under transient Byzantine link failure
model.

For exact consensus problem, it has been shown that (i) an undirected graph of 2f + 1

3A graph G = (V, E) is said to be k-edge connected, if G′ = (V, E −X) is connected for all X ⊆ E such that
|X| < k.
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node-connectivity4 is able to tolerate f Byzantine nodes [56]; and (ii) an undirected graph of
2f + 1 edge-connectivity is able to tolerate f Byzantine links [108]. Researchers also showed
that 2f + 1 node-connectivity is both necessary and sufficient for the problem of information
dissemination in the presence of either f faulty nodes [117] or f fixed faulty links [118]. Unlike
the “transient” failure model, the faulty links are assumed to be fixed throughout the execution
of the algorithm in [118].

Charron-Bost and Schiper proposed the HO (Heard-Of) model that captures node failures
and message losses at the same time [40]. To the best of our knowledge, the HO model is the first
model unifying system synchrony and node crashes together. The HO model assumes round-
based algorithms, which consists of three steps: (i) send messages, (ii) receive messages, and (iii)
perform computation (specified by the algorithm). For each round r and each node i, let HO(i, r)
denote the set of nodes that node i has “heard of” at round r. Then the model also specifies a
set of communication predicates over all HO(i, r) to capture failures, message loss, or delayed
messages. The benefits of the HO models are: (i) it puts different types of failures in a unified
framework, including static, dynamic, permanent or transient faults, and (ii) compared with the
classic fault models, the impossibility proofs and correctness proofs (for given algorithms) are
in general shorter and simpler [40]. In [40], Charron-Bost and Schiper discussed communication
predicates that map to classic problem specification, e.g., “Synchronous system, reliable links, at
most f crash failures” or “Partially synchronous system, eventual reliable links, at most f crash
failures”, and identified the relationships among these communication predicates and solvability
of consensus problems specified in the HO model with these predicates. Subsequently, Biely et
al. generalized the model to value faults, which can also capture Byzantine node and link faults
[26].

2.4 Extra Properties

Early-Stopping Property In synchronous systems, an algorithm has an early-stopping prop-
erty if the algorithm can terminate early if there is less than f faults in an execution. Suppose
that given an execution, an actual number of faults in a system is t, where t ≤ f . It has been
shown that fault-tolerant consensus cannot be achieved in ≤ t + 1 rounds using determinis-
tic algorithms in synchronous systems [84]. That is, the lower bound of round complexity is
min{t+ 2, f} for crash faults [70], omission fault [98], and Byzantine faults [52]. In [52], Dolev
and Lenzen proposed a new property, namely early-deciding, which requires fault-free nodes to
decide early but the decided nodes may continue to send messages in to help other undecided
nodes. They showed that an early-deciding algorithm requires more message complexity than
normal consensus algorithms [52]. The proof consists of two parts: (i) find a “pivotal” node
that is critical for whether the execution would result in output 0 or output 1, and (ii) ensure
that Ω(f2) messages have to be exchanged in certain rounds to achieve consensus. As a result,
they are able to show that for any min{t + 2, f}-deciding binary consensus algorithm and any
1 ≤ t ≤ f/2, there is an execution such that number of faults is t and fault-free nodes send at
least f2t/44 messages.

4A graph G = (V, E) is said to be k-node connected, if G′ = (V −X, E) is connected for all X ⊆ V such that
|X| < k.
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One-Step Property An asynchronous consensus algorithm has one-step property if there is
no contention (i.e., all fault-free nodes propose the same input value), the algorithm terminates
within in one communication step. A communication step consists of three events: (i) send
messages, (ii) receive messages, and (iii) do local computation and update local state. One-step
property is first proposed for crash-tolerant consensus algorithms [29] and later extended to
Byzantine consensus algorithms [58, 115]. These algorithms share similar structures: (i) use
communication primitives to exchange values, and produce output if there is enough match, and
(ii) use traditional consensus algorithms to achieve the consensus if no output is generated in
the first phase. Typically, the lower bound on the number of nodes to achieve one-step property
is more than classic correctness properties (validity and agreement).

3 Exploration of Practical Applications

We start with systems that tolerate crash node faults, particularly, two families of algorithms –
Paxos [73] and Raft [97]. Then, we discuss efforts to tolerate more complex failures and BFT
(Byzantine Fault-Tolerance) systems. Finally, we compare Bitcoin-related work [94] with BFT
systems and Byzantine consensus. Typically, these systems satisfy correctness (or safety) in
asynchronous network; however, to ensure progress (or liveness), there must exist some time
periods that all messages are received within time.

3.1 Paxos and Raft

Paxos [73, 74, 75, 89] is the well-known family of consensus protocols tolerating crash node
faults in asynchronous network. Since Paxos was first proposed by Lamport [73, 74], variants of
Paxos were developed and implemented in practical systems, such as Chubby lock service used
in many Google systems [30, 44], and membership management in Windows Azure [35].5 Yahoo!
also developed ZaB [105], a protocol achieving atomic broadcast in asynchronous network with
FIFO channels, and used ZaB to build the widely-adopted coordination service, ZooKeeper
[67]. ZooKeeper is later used in many practical storage systems, like HBase [5] and Salus [131].
Recently, many novel mechanisms have been proposed to improve the performance of Paxos,
including quorum lease [91], diskless Paxos [119], even load balancing [90], and time bubbling
(for handling nondeterministic network input timing) [48].

In 2014, Ongaro and Ousterhout from Stanford proposed a new asynchronous consensus
algorithm – Raft [97]. Their main motivation was to simplify the design of consensus algorithm
so that it is easier to understand and verify the design and implementation. One interesting
(social) experiment by Ongaro and Ousterhout was mentioned in [97]: “In an informal survey
of attendees at NSDI 2012, we found few people who were comfortable with Paxos, even among
seasoned researchers”. To simplify the (conceptual) design, Raft integrates the consensus solving
part deeply with leader election and membership/configuration management [97].6 After their

5We would like to thank the anonymous reviewer who pointed out that Windows Azure also uses ZooKeepr
to manage virtual machines [1].

6While the original Paxos [73, 74] is theoretically elegant, practitioners have found it hard to implement Paxos
in practice [37]. One difficulty mentioned in [37] is that membership/configuration management is non-trivial in
practice.
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publication, Raft has quickly gained popularity, and been used in practical key-value store
systems such as etcd [4] and RethinkDB [9]. Please refer to their website [8] for a list of papers
and implementations.7

3.2 Arbitrary State Corruption

Recently, researchers explored fault model beyond crash node failures. One such fault model is
called Arbitrary State Corruption (ASC) [45, 20, 21]. In the ASC fault model, the whole state
of a node may transition to an arbitrary state due to incidents like bit flips or hardware error.
However, the failure is not caused by a malicious adversary. Thus, it is generally assumed that
a message from a faulty node can be detected in the ASC model [20, 21]. Note that the ASC
model is a proper subset of Byzantine fault model, since Byzantine nodes can behave arbitrarily,
including sending messages in a way that may not be detected.

Correia et al. introduced a library, PASC, which relies on different check mechanisms (e.g.,
CRC code) to harden crash-fault tolerant algorithms against ASC faults [45]. PASC does not
replicate the entire node; rather, it replicates internal states of each node; thus, the overhead
is moderate comparing to BFT replication (discussed in Section 3.3). Behrens et al. proposed
a framework to harden distributed systems using arithmetic codes, which is able to detect
transit and permanent hardware errors with high probability [21]. Subsequently, Behrens et
al.[20] observed that the technique in [45] does not manage memory usage efficiently, and the
mechanism in [21] incurs large latency due to the component for encoding executions. The
authors addressed the aforementioned issues, and used their technique to harden memcached [7]
with moderate overhead [20].

3.3 Byzantine Fault Tolerance

Since Castro and Liskov published their seminal work PBFT (Practical Byzantine Fault-Tolerance)
[36], significant effort has been devoted to improving Byzantine Fault-Tolerance (BFT), includ-
ing (i) reducing the overhead like communication costs, or replication costs, and (ii) providing
higher throughput or lower latency (in the form of round complexity). Generally speaking, BFT
system replicates deterministic state machines over different machines (or replicas) to tolerate
Byzantine node failures. In other words, BFT systems implement the State Machine Replication
systems [110] that tolerate Byzantine faults. The main challenge is to design a system such that
it behaves like a centralized server to the clients in the presence of Byzantine failures. More pre-
cisely, the system is given requests from the clients, and the goals are: (i) the fault-free replicas
agree on the total order of the requests, and then the replicas execute the requests following the
agreed order (safety); and (ii) clients learn the responses to their requests eventually (liveness).
Usually, liveness is guaranteed only in the grace periods, i.e., when messages are delivered in
time.

7Paxos has been the de facto standard of consensus algorithms for a long time [6]; however, we feel that it is
still of interests to discuss Raft as well, as Raft has gained more and more attentions in academia and industry
[8].
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Improving Performance Castro and Liskov’s work on Practical Byzantine Fault-Tolerance
(PBFT) showed for the first time that BFT mechanism is useful in practice [36]. PBFT requires
3f + 1 replicas, where f is the upper bound on the number of Byzantine failures in the whole
system. Subsequently, Quorum-based solutions Q/U [12] and HQ [47] have been proposed,
which only require one round of communication in contention-free case (when no replica fails,
and the network has stable performance and no contention happens) by allowing clients directly
interact with the replicas to agree on an execution order.Such type of mechanisms reduce latency
(number of rounds required) in some case, but is shown to be more expensive in other cases
[72]. Hence, Zyzzyva [72] focused on increasing performance in failure-free case (when no replica
fails) by allowing speculative operations and novel roll-back mechanism. Zyzzyva requires 3f+1
replicas; however, a single crash failure would significantly reduce the performance by forcing
Zyzzyva protocol run in slow mode – where no speculative operation can be executed [72]. Thus,
Kotla et al. also introduced Zyzzyva5, which can be executed in fast mode even if there are
crash failures, but Zyzzyva5 requires 5f + 1 replicas [72]. Subsequently, Scrooge [113] reduced
the replication cost of Zyzzyva5 by requiring the participation from clients to detect replicas’
misbehaviors.

The aforementioned BFT systems are designed to optimize performance for certain circum-
stances, e.g., HQ for contention-free case and Zyzzyva for failure-free case. Guerraoui et al.
proposed a new type of BFT systems that can be constructed to have optimized performance
under difference circumstances [61]. Such tunable design is useful, since it provides the flexibility
of choosing different performance trade-off according to the network performance and applica-
tion requirements. Their systems are based on three core concepts: (i) abortable requests, (ii)
composition of (abortable) BFT instances, and (iii) dynamic switching among BFT instances.
The tunable parameter specifies the progress condition under which a BFT instance should
not abort. Some example conditions include contention, system synchrony or node failures. In
[61], Guerraoui et al. showed how to construct new BFT systems with different parameter;
particularly, they proposed (i) AZyzzyva which composes Zyzzyva and PBFT together to have
more stable performance than Zyzzyva and faster failure-free performance than PBFT, and (ii)
Aliph which composes PBFT, Quorum-based protocol optimized for contention-free case, and
Chain-based protocol optimized for high-contention cases without failures and asynchrony [61].

For computation-heavy workload, Yin et al. proposed to separate agreement protocol from
executions of clients’ requests [133]. This separation mechanism reduces the replication cost to
2f + 1. Note that the system still requires 3f + 1 replicas to achieve agreement on the order
of the clients’ requests, but the executions of requests, and data storage only occur at 2f + 1
replicas. Later, Wood et al. built a system, ZZ, which reduces the replication cost to f+1 using
virtualization technique [132]. The idea behind ZZ is that f + 1 active replicas are sufficient for
fault detection, and when fault is detected, their virtualization technique allows ZZ to replace
the faulty replica by waking up fresh replica and retrieving current system state with small
overhead [132].

Clement et al. observed that a single Byzantine replica or client can significantly impact
the performance of HQ, PBFT, Q/U and Zyzzyva [43]. Thus, they proposed a new system
Aardvark, which provides good performance when Byzantine failures happen by sacrificing the
failure-free case performance [43]. Later, Clement et al. also demonstrated how to combine
Zyzzyva and Aardvark so that the new system, Zyzzyvark, not only tolerates faulty clients, but
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also enjoys fast performance in the failure-free case by leveraging speculative operations [42].

Hardening Crash-Tolerant Systems Since most existing systems are designed to tolerate
crash faults, there are efforts on hardening existing crash-tolerant systems against Byzantine
fault models. Haeberlen et al. was among the first to propose using log-based detection mecha-
nism to hardening crash-tolerant systems [62]. They proposed a library called PeerReview that
can be used to detect Byzantine faults, and such detection can be irrefutably linked to faulty
nodes – the identity of faulty nodes can be eventually learned by all fault-free nodes. Unfor-
tunately, as discovered by Ho et al. [65], PeerReview can only be used to detect a subset of
Byzantine failures. Nysiad [65] transforms crash-tolerant protocols to Byzantine-tolerant pro-
tocols by assigning a set of guards to verify each replica’s behavior. However, Nysiad needs
a logically centralized service to take care of configuration change; thus, Nysiad requires high
overhead [45]. UpRight [42] is an architecture to integrate BFT and crash-tolerant systems with
small overhead. UpRight has taken ideas from three prior systems: speculative execution [72],
robustness to clients’ failure [43], and agreement/execution separation [133]. One novelty of
UpRight is to introduce shim layers for clients and servers of existing existing crash-tolerant
systems that can (i) order clients’ requests, and (ii) verify results from servers. Clement et al.
used UpRight library to make ZooKeeper [67] tolerate Byzantine faults [42].

Hardware-based BFT Different from the aforementioned software-based BFT mechanisms,
other researchers proposed using trusted hardware components to reduce costs. MinBFT [128]
uses trusted hardware to build an unique sequential identifier generator, which is then used to
verify messages from each replica. With such scheme, MinBFT only requires 2f + 1 agreeing
replicas. CheapBFT [69] relies on an FPGA-based trusted components to authenticate messages,
and is able to tolerate all-but-one failures, i.e., it only requires f + 1 replicas. Recently, István
et al. proposed a novel idea of using FPGA to achieve Byzantine-tolerant consensus and atomic
broadcast [68]. Then, they showed how to use such FPGA-based atomic broadcast to make
ZooKeeper tolerate Byzantine faults with small decrease of performance (compared to crash-
tolerant one). One down side of their mechanism is that the developers need to implement an
application-specific network protocol [68].

Relaxed BFT Inspired by the popularity of practical eventually consistent systems (e.g.,
[3, 50]), some researchers also proposed relaxed safety and liveness properties for BFT systems.
CLBFT sacrifices liveness for higher safety, i.e., tolerating more replica failures, by increasing the
quorum size (in proportion of the number of replicas) [106]. Zeno [114] chose eventual consistency
to provide higher availability when network partition happens. Depot [85] only ensures a fork-
join-causal consistency (a model slightly weaker than causal consistency) to eliminate trust for
safety, i.e., a client needs to trust only himself to ensure the safety property. Prophecy [112]
focuses on increasing throughput for read-heavy workloads; however, Prophecy only provides
delay-once consistency (a new consistency model weaker than strong consistency [112]), and
relies on a trusted component to detect misbehaviors. Liu et al. proposed the concept of
XFT (cross fault-tolerance), which relax the degree of fault-tolerance [81]. Particularly, XFT is
correct only when all the following hold: (i) only crash faults happen in asynchronous periods;
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and (ii) non-crash faults (Byzantine faults) happen only in synchronous periods (grace periods).
By relaxing the guarantees, the authors build XPaxos which has comparable performance of
crash-fault-tolerant systems and tolerates Byzantine faults (in grace periods) [81].

BFT Storage System There are also BFT systems specifically designed for storage systems.
Goodson et al. proposed an erasure-coded storage system tolerating Byzantine replicas and
clients using 4f + 1 replicas [60]. The main technique to detect faulty client writing different
values to different replicas is having the next fault-free client detect the inconsistency (This
scheme is possible due to the benefit of coding). Based on this system, Abd-El-Malek et al. pro-
posed a lazy verification protocol to reduce client’s workload, which shifts the work to storage
replicas during idle time [13]. However, the scheme still requires 4f + 1 replicas, and consumes
high bandwidth [64]. Later, Hendricks et al. built another erasure-coded storage system [64]
which relies on a short checksum comprised of cryptographic hashes and homomorphic finger-
prints to optimize the throughput in the contention-free case (when no replica fails, and the
network has stable performance and no contention happens). The system requires 3f + 1 repli-
cas. Recently, Cachin et al. built a BFT storage system, MDStore, which only requires 2f + 1
replicas under the assumption that the client is always fault-free when writing data [32, 33].
MDStore system had two novelties: (i) separation of data and metadata storage, and (ii) pro-
vide metadata service using only lightweight cryptographic hash functions. MDStore tolerates
any number of Byzantine readers and crash-faulty writers and up to f Byzantine faulty replicas.

Cloud-of-Clouds The idea of building BFT storage systems over intercloud (or cloud-of-
clouds) becomes popular lately, since as discussed in [129], the assumption of failure inde-
pendence holds naturally due to the different cloud administrators, geographical locations and
implementations from different cloud service providers. Cachin et al. proposed a layered ar-
chitecture for BFT storage systems over intercloud, ICStore (abbreviating InterCloud Storage)
[34]. One novelty of ICStore is to provide different dependability goals: (i) confidentiality, (ii)
integrity, and (iii) reliability and consistency. ICStore’s layered architecture allows clients to
choose different levels of dependability and performance by choosing by selecting different oper-
ation point for each layer [34]. Independently, Bessani et al. proposed DEPSKY, a BFT storage
system supporting efficient encoding and confidentiality [22] with 3f + 1 replicas. However, the
liveness property is weakened in DEPSKY, i.e., the read protocol ensures responses only when
a finite number of contending writes happen. NCCloud focuses on both fault tolerance and
storage repair [66] by designing new regenerating code that has low repair cost and can be used
to detect a subset of Byzantine behaviors.

3.4 Bitcoin

Bitcoin is a digital currency system proposed by Satoshi Nakamoto [94] and later gained popu-
larity due to its characteristics of anonymity and decentralized design [2]. Since Bitcoin is based
on cryptography tools (Proof-of-Work mechanism), Bitcoin is a type of cryptocurrencies. Even
though it has large latencies (on the order of an hour), and the theoretical peak throughput is
up to 7 transactions per second [130], Bitcoin is still one of the most popular cryptocurrencies.
Here, we briefly discuss its mechanism and relation with Byzantine consensus and BFT systems.
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Bitcoin Mechanism The core of Bitcoin is called Blockchain, which is a peer-to-peer ledger
system, and acts as a virtually centralized ledger that keeps track of all bitcoin transactions.
A set of bitcoin transactions are recorded in blocks. Owners of bitcoins can generate new
transactions by broadcasting signed blocks to the Bitcoin network.8 Then, a process called
mining confirms the transactions and includes the transactions to the Blockchain (the centralized
ledger system). Essentially, mining is a (randomized) distributed consensus component that
confirms pending transactions by including them in the Blockchain. To include a transaction
block, a miner needs to solve a “proof-of-work” (POW) or “cryptographic puzzle”. The main
incentive mechanism for Bitcoin participants to maintain the Blockchain and to confirm new
transactions is to reward the participants (or the miners) some bitcoins – the first miner that
solves the puzzle receives a certain amount of bitcoins. The main reason that the mining process
can be related to consensus is because each miner maintains the chain of blocks (Blockchain)
at local storage, and the global state is consistent at all miners (eventually) – eventually, all
fault-free miners will have the same Blockchain [94]. That is, anonymous Bitcoin participants
need to agree on the total order of the transactions.

One important feature of the cryptocurrency system is to prevent the double-spending attacks,
i.e., spending some money twice. The consistent global state (order of transactions) can be used
to prevent double-spending attacks, since the attackers have no ability to reorganize the order
of blocks (i.e., modify the Blockchain, the ledger system). In [94], Satoshi Nakamoto presented
a simple analysis that showed with high probability and attackers’ computation power less than
1/3 of total computation power, Bitcoin’s participants maintain a total order of the transactions;
hence, no double-spending attack is possible with high probability. However, the models under
consideration were not well-defined and the analysis was not rigorous. Thus, significant effort has
been devoted to formally prove the correctness of Bitcoin mechanism or improved the design and
performance. Please refer to [95] for a thorough discussion. Below, we focus on the comparison
of Bitcoin and Byzantine Consensus/BFT systems.

Comparison with Byzantine Consensus There are several differences between problem
formulation of Byzantine consensus (as described in Section 1.1) and the assumptions of Bitcoin
[59, 87, 94], such as in Bitcoin, (i) the number of participants is dynamic; (ii) participants
are anonymous, and the participants cannot authenticate each other; (iii) as a result of (ii),
participants have no way to identify the source of a received message; and (iv) the Bitcoin
network is able to synchronize in the course of a round, i.e., the network communication delay
is negligible compared to computation time.

It was first suggested by Nakamoto that Bitcoin’s POW-based mechanism can be used to
solve Byzantine consensus [93, 10]. However, the discussion is quite informal [93]. To the
best of our knowledge, Miller and LaViola were the first one to formalize the suggestion and
proposed a POW-based model to achieve Byzantine consensus when majority of participants are
fault-free. However, the validity is only ensured with non-negligible probability (but not with
over-whelming probability). Subsequently, Garay et al. [59] extracted and analyzed the core
mechanism of Bitcoin [59], namely Bitcoin Backbone. They first identified and formalized two

8Here, we follow the convention of Bitcoin literature – Bitcoin network consists of all the anonymous partici-
pants in the Bitcoin system. Note that in previous sections, network means the communication network. Also,
throughout the discussion, “Bitcoin” means the system, whereas, “bitcoin” means the virtual money.
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properties of Bitcoin Backbone: (i) common prefix property: fault-free participants will possess
a large common prefix of the blockchain, and (ii) chain-quality property: enough blocks in the
blockchain are contributed by fault-free participants. Then, they presented a simple POW-based
Byzantine consensus algorithm which is a variation of Nakamoto’s suggestion [93], but satisfy
agreement and validity assuming that the adversarys computation power (puzzle-solving power)
is bounded by 1/3. Their algorithm can also be used to solve Byzantine consensus with strong
validity [96]. Finally, they proposed a more complicated consensus protocol, which was proved
to be secure assuming high network synchrony and that the adversarys computation power is
strictly less than 1/2. In [59], Garay et al. focused on how to use Bitcoin-inspired mechanism
to solve Byzantine consensus, and did not compare Bitcoin with BFT systems.

Comparison with BFT System Conceptually, BFT and Bitcoin have similar goals:

• BFT : clients requests are executed in a total order distributively, and

• Bitcoin: a total order of blocks are maintained by each participants distributively.

Therefore, it is interesting to compare BFT with Bitcoin as well. Below, we address fundamental
differences between the two.

• Formulation: As discussed above, model assumptions for BFT are similar to the ones
for Byzantine consensus, which are very different from the ones for Bitcoin. One major
difference is the anonymous node identity. In BFT, the system environment is more well-
controlled, and replica IDs are maintained and managed by the system administrators. In
contrast, Bitcoin is a decentralized system where all the participants are anonymous. As
a result, BFT systems can use many well-studied tools from the literature, e.g., atomic
broadcast, and quorum-based mechanism, whereas, Bitcoin-related systems usually rely
on POW (proof-of-work) or various cryptographic puzzles.

• Features: In [130], Marko Vukolic mentioned that the features of BFT and Bitcoin are
at two opposite ends of the scalability/performance spectrum due to different application
goals. Generally, speaking, BFT systems offer good performance (low latency and high
throughput) for small number of replicas (≤ 20 replicas), whereas, Bitcoin scales well
(≥ 1000 participants), but the latency is prohibitively high and throughput is limited.

• Incentive: In BFT system, every fault-free replica/client is assumed to follow the algorithm
specification. However, in Bitcoin, participants may choose not to spend their computation
power on solving puzzles; thus, there is a mechanism in Bitcoin to reward the mining
process [94].

• Correctness property: As addressed in Section 3.3, BFT systems satisfy safety in asyn-
chronous network and satisfy liveness when network is synchronous enough (in grace pe-
riod). As shown in [94, 59], Bitcoin requires network synchronous enough for ensuring
correctness (when network delay is negligible compared to computation time).
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In [130], Marko Vukolic proposed an interesting research direction on finding the synergies
between Bitcoin-related and BFT systems, since both systems have its limitations. On one
hand, the poor performance of POW-based mechanism limits the applicability of Blockchain
in other domains like smart contract application [130, 27]. On the other hand, BFT systems
are not widely adopted in practice due to their poorer scalability and lack of killer applications
[81, 129]. SCP is one recent system that utilizes hybrid POW/BFT architecture [82].

4 Conclusion and Future Directions

4.1 Conclusion

Fault-tolerant consensus is a rich topic. This paper is only managed to sample a subset of recent
results. To augment previous surveys/textbooks on the same topic [46, 104, 31, 84, 19], we focus
on two angles: (i) new consensus problem formulations; and (ii) practical applications. For the
second part, we focus on the Paxos- and Raft-based systems, and BFT systems. We also discuss
Bitcoin which has close relation with Byzantine consensus and BFT systems.

4.2 Future Directions

The future directions focus on one main theme: bridging the gap between theory and practice.
As discussed in the first part of paper, researchers have explored wide variety of different (the-
oretical) problem formulations; however, there is no consolidated or unified framework. As a
result, it is often hard to compare different algorithms and models. Worse, it is even harder for
practitioners to decide which algorithms or problem formulations to choose. Thus, making these
results more coherent and more practical (e.g., giving rule-of-thumbs for picking algorithms)
would be an important task.

In the second part, we discuss the efforts of applying fault-tolerant consensus in real systems.
Unfortunately, the difficulty in implementing or even understanding the consensus algorithms
prevents from wider applications. How to simplify the design and verify the implementation is
also a key task. Raft [97] is one good example of how simplified design and explanation could
help gain popularity. Another major task is to understand and analyze more thoroughly the
popular distributed systems. As suggested in [130, 59], BFT systems and Bitcoin are not yet
well-understood. The models presented in [59, 87] and other works mentioned in [130] are only
the first step toward this goal. Only after enough research, could we improve the state-of-art
mechanisms.
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