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Abstract

The software-defined networking paradigm introduces interesting opportunities to operate networks
in a more flexible yet formally verifiable manner. Despite the logically centralized control, however, a
Software-Defined Network (SDN) is still a distributed system, with inherent delays between the switches
and the controller. Especially the problem of changing network configurations in a consistent manner, also
known as the consistent network update problem, has received much attention over the last years. This
paper revisits the problem of how to update an SDN in a transiently consistent, loop-free manner. First,
we rigorously prove that computing a maximum (“greedy”) loop-free network update is generally NP-hard;
this result has implications for the classic maximum acyclic subgraph problem (the dual feedback arc
set problem) as well. Second, we show that for special problem instances, fast and good approximation
algorithms exist.

1 Introduction

By outsourcing and consolidating the control over multiple data-plane elements to a centralized software
program, Software-Defined Networks (SDNs) introduce flexibilities and optimization opportunities. However,
while a logically centralized control is appealing, an SDN still needs to be regarded as a distributed system,
posing non-trivial challenges [3, 10, 18, 19, 20, 21, 22]. In particular, the communication channel between
switches and controller exhibits non-negligible and varying delays [11, 21], which may introduce inconsistencies
during network updates.

Over the last years, the problem of how to consistently update routes in a (software-defined) network has
received much attention, both in the systems as well as in the theory community [10, 17, 19, 21, 24]. While
in the seminal work by Reitblatt et al. [21], protocols providing strong, per-packet consistency guarantees
were presented (using some kind of 2-phase commit technique), it was later observed that weaker (“relaxed”),
but transiently consistent guarantees can be implemented more efficiently. In particular, Mahajan and
Wattenhofer [19] proposed a first algorithm to update routes in a network in a transiently loop-free manner.
Their approach is appealing as it does not require packet tagging (which comes with overheads in terms of
header space and also introduces challenges in the presence of middleboxes [23] or multiple controllers [3]) or
additional TCAM entries [3, 21] (which is problematic given the fast growth of forwarding tables both in
the Internet as well as in the virtualized datacenters [2]). Moreover, the relaxed notion of consistency also
allows (parts of the) paths to become available sooner [19].

Concretely, to update a network in a transiently loop-free manner, an algorithm can proceed in rounds [17,
19]: in each round, a “safe subset” of (so-called OpenFlow) switches is updated, such that, independently
of the times and order in which the updates of this round take effect, the network is always consistent.
The scheme can be implemented as follows: After the switches of round t have confirmed the successful
update (e.g., using acknowledgements [14]), the next subset of switches for round t + 1 is scheduled.
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Union’s Horizon 2020 research and innovation programme (ERC consolidator grant DISTRUCT, agreement No 648527). The
research of Arne Ludwig and Stefan Schmid was supported by the EU project UNIFY.
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It is easy to see that a simple update schedule always exists: we can update switches one-by-one, proceeding
from the destination toward the source of a route. In practice, however, it is desirable that updates are fast
and new routes become available quickly: Ideally, in order to be able to use as many new links as possible,
one aims to maximize the number of concurrently updated switches [19]. We will refer to this approach as
the greedy approach.

This paper revisits the problem of updating a maximum number of switches in a transiently loop-free
manner. In particular, we consider the two different notions of loop-freedom introduced in [17]: strong
loop-freedom and relaxed loop-freedom. The first variant guarantees loop-freedom in a very strict, topological
sense: no single packet will ever loop. The second variant is less strict, and allows for a small bounded
number of packets to loop during the update; however, at no point in time should newly arriving packets
be pushed into a loop. It is known that by relaxing loop-freedom, in principle many more switches can be
updated simultaneously.
Our Contributions. We rigorously prove that computing the maximum set of switches which can be updated
simultaneously, without introducing a loop, is NP-hard, both regarding strong and relaxed loop-freedom.
This result may be somewhat suprising, given the very simple graph induced by our network update problem.
The result also has implications for the classic Maximum Acyclic Subgraph Problem (MASP), a.k.a. the dual
Feedback Arc Set Problem (dFASP): The problem of computing a maximum set of switches which can be
updated simultaneously, corresponds to the dFASP, on special graphs essentially describing two routes (the
old and the new one). Our NP-hardness result shows that MASP/dFASP is hard even on such graphs. On
the positive side, we identify network update problems which allow for optimal or almost optimal (with a
provable approximation factor less than 2) polynomial-time algorithms, e.g., problem instances where the
number of leaves is bounded or problem instances with bounded underlying undirected tree-width.
Organization. The remainder of this paper is organized as follows. Section 2 introduces preliminaries and
presents our formal model. In Section 3, we prove that computing greedy updates is NP-hard, both for
strong and for relaxed loop-freedom. Section 4 describes polynomial-time (approximation) algorithms. After
reviewing related work in Section 5, we conclude and discuss future work in Section 6. Some technical details
and longer discussions appear in the arXiv Report 1605.03158.

2 Model

We are given a network and two policies resp. routes π1 (the old policy) and π2 (the new policy). Both π1
and π2 are simple directed paths (digraphs). Initially, packets are forwarded (using the old rules, henceforth
also called old edges) along π1, and eventually they should be forwarded according to the new rules of π2.
Packets should never be delayed or dropped at a switch, henceforth also called node: whenever a packet
arrives at a node, a matching forwarding rule should be present. Without loss of generality, we assume that π1
and π2 lead from a source s to a destination d.

We assume that the network is managed by a controller which sends out forwarding rule updates to the
nodes. As the individual node updates occur in an asynchronous manner, we require the controller to send
out simultaneous updates only to a “safe” subset of nodes. Only after these updates have been confirmed
(acked), the next subset is updated.

We observe that nodes appearing only in one or none of the two paths are trivially updateable, therefore we
focus on the networkG induced by the nodes V which are part of both policies π1 and π2, i.e., V = {v ∶ v ∈ π1∧v ∈
π2}. We can represent the policies as π1 = (s = v1, v2, . . . , v` = d) and π2 = (s = v1, π(v2), . . . , π(v`−1), v` = d),
for some permutation π ∶ V ∖ {s, d} → V ∖ {s, d} and some number `. In fact, we can represent policies
in an even more compact way: we are actually only concerned about the nodes U ⊆ V which need to be
updated. Let, for each node v ∈ V , out1(v) (resp. in1(v)) denote the outgoing (resp. incoming) edge according
to policy π1, and out2(v) (resp. in2(v)) denote the outgoing (resp. incoming) edge according to policy π2.
Moreover, let us extend these definitions for entire node sets S, i.e., outi(S) = ⋃v∈S outi(v), for i ∈ {1, 2}, and
analogously, for ini. We define s to be the first node (say, on π1) with out1(v) ≠ out2(v), and d to be the last
node with in1(v) ≠ in2(v). We are interested in the set of to-be-updated nodes U = {v ∈ V ∶ out1(v) ≠ out2(v)},
and define n = ∣U ∣. Given this reduction, in the following, we will assume that V only consists of interesting
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nodes (U = V ).
We require that paths be loop-free [19], and distinguish between Strong Loop-Freedom (SLF) and Relaxed

Loop-Freedom (RLF) [17].
Strong Loop-Freedom. We want to find an update schedule U1, U2, . . . , Uk, i.e., a sequence of subsets Ut ⊆ U
where the subsets form a partition of U (i.e., U = U1 ⊍U2 ⊍ . . . ⊍Uk), with the property that for any round t,
given that the updates Ut′ for t′ < t have been made, all updates Ut can be performed “asynchronously”, that
is, in an arbitrary order without violating loop-freedom. Thus, consistent paths will be maintained for any
subset of updated nodes, independently of how long individual updates may take.

More formally, let U<t = ⋃i=1,...,t−1Ui denote the set of nodes which have already been updated before
round t, and let U≤t, U>t etc. be defined analogously. Since updates during round t occur asynchronously,
an arbitrary subset of nodes X ⊆ Ut may already have been updated while the nodes X = Ut ∖ X still
use the old rules, resulting in a temporary forwarding graph Gt(U,X,Et) over nodes U , where Et =
out1(U>t ∪X) ∪ out2(U<t ∪X). We require that the update schedule U1, U2, . . . , Uk fulfills the property that
for all t and for any X ⊆ Ut, Gt(U,X,Et) is loop-free.

In the following we will call an edge (u, v) of the new policy π2 forward, if v is closer (with respect to π1)
to the destination, resp. backward, if u is closer to the destination. It is also convenient to name nodes after
their outgoing edges w.r.t. policy π2 (e.g., forward or backward); similarly, it is sometimes convenient to say
that we update an edge when we update the corresponding node.

While the initial network configuration consists of two paths, in later rounds, the already updated edges
may no longer form a line from left to right, but rather an arbitrary directed tree, with tree edges directed
towards the destination d. We will use the terms forward and backward also in the context of the tree: they
are defined with respect to the direction of the tree root. However, there also emerges a third kind of edges:
horizontal edges in-between two different branches of the tree.
Relaxed Loop-Freedom. Relaxed Loop-Freedom (RLF) is motivated by the practical observation that
transient loops are not very harmful if they do not occur between the source s and the destination d. If relaxed
loop-freedom is preserved, only a bounded number of packets can loop: we will never push new packets into a
loop “at line rate”. In other words, even if switches acknowledge new updates late (or never), new packets
will not enter loops. Concretely, and similar to the definition of SLF, we require the update schedule to fulfill
the property that for all rounds t and for any subset X, the temporary forwarding graph Gt(U,X,E′

t) is
loop-free. The difference is that we only care about the subset E′

t of Et consisting of edges reachable from the
source s.
The Greedy Approach. Our objective is to update simultaneously as many nodes (or equivalently, edges)
as possible: an objective initially studied in [19], which may also be seen as a greedy approach to minimize
the number of rounds1. Note that in the first round, computing a maximum update set is trivial: All forward
edges can be updated simultaneously, as they will never introduce a cycle, but no backward edge can be
updated in the first round, as it can always induce a cycle; horizontal edges do not exist in the first round.
Also observe that since all nodes lie on the path from source to destination, this holds for both strong and
relaxed loop-freedom. However, as we will show in this paper, already in the second round, a computationally
hard problem can arise.

3 Being Greedy is Hard

Interestingly, although the underlying graphs are very simple, and originate from just two (legal) paths, we
now prove that the loop-free network update problem is NP-hard.

Theorem 1. The greedy network update problem, the problem of selecting a maximum set of nodes which
can be updated simultaneously, is NP-hard.

Our reduction is from the NP-hard Minimum Hitting Set problem. This proof is similar for both
consistency models: strong and relaxed loop-freedom, and we can present the two variants together. The
inputs to the hitting set problem are:

1It is known however that in the worst case, a greedy approach can lead to an unnecessarily large number of rounds [17]
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1. A universe of m elements E = {ε1, ε2, . . . , εm}.

2. A set S = {S1, S2, S3, . . . , Sk} of k subsets Si ⊆ E .

The objective is to find a subset E ′ ⊆ E of minimal size, such that each set Si includes at least one
element from E ′: ∀Si ∈ S ∶ Si ∩ E ′ ≠ ∅. In the following, we will assume that elements are unique and can
be ordered ε1 < ε2 . . . < εm. The idea of the reduction is to create, in polynomial time, a legal network
update instance where the problem of choosing a maximum set of nodes which can be updated concurrently
is equivalent to choosing a minimum hitting set. While in the initial network configuration, essentially
describing two paths from s to d, a maximum update set can be chosen in polynomial time (simply update
all forwarding edges but no backward edges), we show in the following that already in the second round, the
problem can be computationally hard.

Figure 1: Example: Construction of network update instance given a hitting set instance with E =
{1,2,3, . . . ,m} and S = {{1,2,3},{1,m}}. Each element ε ∈ E is represented by a pair of branches, one
called outgoing (out) and one incoming (in). Moreover, we add a branch representing the s − d path on the
very right. The black branches represent already installed rules (either old or updated in the first round),
and new rules (dashed) are situated between the branches. There are three types of to-be-updated, dashed
edges: one type represents the sets (loosely and densely dashed grey), one type represents element selector
edges (between in and out branch, loosely dashed black), and one type is required to connect the s − d path
to the elements (densely dashed grey). We prove that such a scenario can be reached after one update round
where all (and only) forward edges are updated. Top-left: Each loosely dashed grey edge represents m + 1
edges, and is used to describe the set {1, 2, 3}:(1, 2), (2, 3), (3, 1). Top-right: Each densely dashed grey edge
represents m+ 1 edges and is used for the set {1,m}: (1,m), (m, 1). Bottom-left: The loosely dashed black
edges are single edges and are the element selector edges, representing the decision if an element is part of E ′
or not. Bottom-right: Each densely dashed edge visualizes m ⋅ (m + 1) edges from the s-branch to the
incoming branches of every ε ∈ E .

More concretely, based on a hitting set instance, we aim to construct a network update instance of the
following form, see Figure 1. For each element ε ∈ E , we create a pair of branches εin and εout, i.e., 2m branches
in total. To model the relaxed loop-free case, in addition to the E branches, we add a source-destination
branch, from s to d, depicted on the right in the figure. We will introduce the following to-be-updated new
edges:
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1. Set Edges (SEs): The first type of edges models sets. Let us refer to the (ordered) elements in a

given set Si by ε
(i)
1 < ε(i)2 < ε(i)3 . . .. For each set Si ∈ S, we now create m+1 edges from each ε

(i)
j to ε

(i)
j+1,

in a modulo fashion. That is, we also introduce m+ 1 edges from the last element to the first element of
the set. These edges start at the out branch of the smaller index and end at the in branch of the larger
index. There are no requirements on how the edges of different sets are placed with respect to each
other, as long as they are not mixed. Moreover, only one instance of multiple equivalent SEs arising in
multiple sets must be kept.

2. Anti-selector Edges (AEs): These m edges constitute the decision problem of whether an element
should be included in the minimum hitting set. AEs are created as follows: From the top of each in
branch we create a single edge to the bottom of the corresponding out branch. That is, we ensure that
an update of the edge from εini to εouti is equivalent to εi /∈ E ′, or, equivalently, every εi ∈ E ′ will not be
included in the update set.

3. Relaxed Edges (WEs): These edges are only needed for the relaxed loop-free case. They connect
the s-d branch to the other branches in such a way that no loops are missed. In other words, the edges
aim to emulate a strong loop-free scenario by introducing artificial sources at the bottom of each branch.
To achieve this, we create a certain number of edges from the s-branch to the bottom of every in branch.
The precise amount will be explained at the detailed construction part of creating parallel edges. See
Figure 1 bottom-left for an example.

The rationale is as follows. If no Anti-selector Edges (AEs) are updated, all Relaxed Edges (WEs) as well
as all Set Edges (SEs) can be updated simultaneously, without introducing a loop. However, since there are
in total exactly m AEs but each set of SEs are m + 1 edges (hence they will all be updated), we can conclude
that the problem boils down to selecting a maximum number of element AEs which do not introduce a loop.
The set of non-updated AEs constitutes the selected sets, the hitting set: There must be at least one element
for which there is an AE, preventing the loop. By maximizing the number of chosen AEs (maximum update
set) we minimize the hitting set.

Let us consider an example: In Figure 1 bottom-right, if for a set Si every AE of εi ∈ Si is updated, a cycle
is created: updating edges εin1 and εinm results in a cycle with the m + 1 edges from εout1 and εoutm . Note that
the resulting network update instance is of polynomial size (and can also be derived in polynomial time). In
the remainder of the proof, we show that the described network update instance is indeed legal, e.g., we have
a single path from source to destination, and this instance can actually be obtained after one update round.

3.1 Concepts and Gadgets

Before we describe the details of the construction, we first make some fundamental observations regarding
greedy updates.

Introducing Forwarding Edges and Branches: First, a delayer concept is required to establish
forwarding edges for the second round. Observe that every forwarding edge (a, b), with a < b, is always
updated by a greedy algorithm in the first round. A delayer is used to construct a forward edge (a, b),
with a < b, that is created in the second round. A delayer for edge (a, b) consists of two edges: an edge
pointing backwards to a′ from a with a′ < a, plus an edge pointing from there to b. The forward edge (a′, b)
will be updated in the first round, which yields an edge (a, b) due to merging (see Figure 2).

Figure 2: Delayer concept: A forwarding edge (a, a′b) can be created in round 2 using a helper node a′.
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We next describe how to create the in and out branches as well as the s branch pointing to the destination
d (recall Figure 1). This can be achieved as follows: From a node close to the source s, we create a path
of forward edges which ends at the destination. Each of these forward edges will be updated in the first
round, and hence merged with its respective successor, which will be the destination for the very last forward
edge. The nodes belonging to these forward edges will be called branching nodes. Every node in-between
two branching nodes will be part of a new branch pointing to the destination. See Figure 3 for an example.
The rightmost node before the branching node on the line will also be the topmost node on the branch after
the first round update (as long as it has an outgoing backward edge, hence not being updated in the first
round). We will use the terms right and high (rightmost-topmost) and left-low for the first and second round
interchangeably.

Figure 3: Creating branches after a greedy update of forward edges.

Introducing Special Segments: In our construction, we split the line (old path) into disjoint segments
which will become independent branches at the beginning of the second round. In addition to these segments,
there will be two special segments, one at the beginning and one at the end. The first will not even become
an independent branch at the beginning of the second round, but is merely used to realize the delayer edges.
Behind the very last segment (εin1 ) and just before d, there is a second special segment, which we call relaxed :
it is needed to create the branch with the source s at the bottom and its connections to the other εini branches.

In our construction, SEs come in groups of m + 1 edges. These edges must eventually be part of a legal
network update path, and must be connected in a loop-free manner. In other words, to create the desired
problem instance, we need to find a way to connect two branches b1 and b2 with m + 1 edges, such that there
is a single complete path from s to d. Furthermore, these edges should not form a loop.

In the arXiv Report 1605.03158, we describe how parallel edges can be constructed.

3.2 Connecting the Pieces

Given these gadgets, we are able to complete the construction of our problem instance.
Realizing the Delayer: The first created segment, temp, serves for edges that are created using the

delayer concept. This is due to our construction: every node that will be created in this interval in our
construction will be a forward node and therefore updated in the first greedy round. The temp segment will
be located right after the source s on the line.

Realizing the Branches: We create two segments for each ε ∈ E , one out and one in, and sort them
in descending global order (and depict them from left to right) w.r.t. ε ∈ E , with the out segment closer to s
than the in segment for each ε, i.e. εoutm , εinm , . . . , ε

out
2 , εin2 , ε

out
1 , εin1 .

Figure 4: Illustration of how to split the old line into segments according to the amount of needed branches
in the second round.

Connecting the Path: We will now create the new path from the source s to the destination d through
all the different segments. This path requires additional edges. We will ensure that these edges can always be
updated and hence do not violate the selector properties. Moreover, we ensure that they do not introduce a
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loop. In order to create a branch with s at the bottom (to ensure that the proof will also hold for relaxed
loop-freedom), we start our path from the source s to a node relaxed− bot on the very left part of the relaxed
segment. From here we need to create the m ⋅ (m + 1) connections to every other εini branch, more precisely
to the very left of the top part of this branch εini−t: the relaxed Edges (WEs). Starting from relaxed − bot,
we create the m ⋅ (m + 1) zigzag edges (described in detail in the technical report only) to the εin1 segment.
Once this is done, we repeat this process for the remaining εini connecting them in the same order blockwise,
as they are ordered on the line. See Figure 5.

Figure 5: Creating the branch with the source at the bottom and m ⋅ (m+1) connections to each εini segment
of the line, as shown in Section 3.1. The m ⋅ (m + 1) connections are visualized as a single edge in the first
round to enhance visibility.

At the beginning of the second round, we will now have a branch with the source s at the bottom and m+1
edges to each of the εini branches. The next step is to connect the out branches with the in branches (the
Set Edges). For each set Sj ∈ S and each pair εi, εl ∈ Sj with no ε′ ∈ Sj , εi < ε′ < εl, we create m + 1 edges
from εouti to εinl , more precisely to the top part εinl−t somewhere above the WEs. Each pair εi, εl only needs to
connect once with the m + 1 edges, even if it occurs in several different sets of S. The last element εi of a
set Sj will additionally need to be connected to the first element of the set (the modulo edges).

After the m+1 connections to εinm , the path returns at the right most (or highest in the (s, d)-branch) node
in the relaxed segment. From here we create a backward edge to the left part of εout1 . Here, we create m + 1
connections to every εini , which is the next larger element in any of the sets. An example is shown in Figure 6.

To complete the m + 1 connections for every pair, we proceed as follows: we connect the εout1 branch to
all required in-branches, then add the edge from εout1 to the εout2 branch, then add the edges from the εout2

branch to all required in-branches, etc. Generally, we interleave adding the edges from the εouti branch to all
required in-branches and then add the i-out to (i + 1)-out edge. Until the path arrives at the end of the last
out branch, εoutm :

� Step A - Create the m + 1 set specific edges: Here we create m + 1 connections to every successor in
the respective sets (at most once per pair). If this element is the largest element in a set, it needs to be
connected to the in part of the smallest element of this set again. Here the delayer concept needs to be
used for the modulo edges.

� Step B - Connecting the out branches: In order to create the next m + 1 connections from the next out
segment εouti+1, we need to connect it from our current out segment εouti . The edge therefore needs to
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Figure 6: Connecting the εout1 branch with the branches εin2 , εin3 , εinm . This scenario would be created for the
sets: {1,2, . . .},{1,3, . . .}, {1,m}. The densely dashed black edges show the outgoing edges from εout1 . The
loosely dashed black edges are the backward edges from the top part of a branch εini to its bottom part (εini−t
to εini−b). The densely dashed grey edges are the way back from εini to εout1 and are needed to complete the
path.

point to the rightmost part of εouti+1. Since this edge is always a backward edge in the first round (we
start closer to the destination and move backward towards the source), it will turn out to be an edge
which points to the very top of εouti+1 at the beginning of the second round. This assures that there are
no loops created, since the only way is going directly towards the destination. From here we create
an edge pointing to the very left side of εouti+1 (evolving to a backward rule from top to bottom of the
branch in the second round, hence not being part of the update set in the first nor the second round).

To finish the construction, we need to add the anti-selector edges (AEs), and connect the in and out
branches of every single εi with each other. The goal is to create, for each given i, an edge from the top of
each εini to the bottom of each εouti . This way, if this edge is included in the update, a loop may be formed:
as every incoming edge to εini arrives below the AEs start point and every outgoing edge on εouti is above
AE’s destination. The decision to not include one of these edges is equivalent to εi ∈ E ′ in the minimum
hitting set problem. In order to keep the path connected we will also need to include edges from εouti to εini+1,
compare Figure 7. These edges will point to the top of εini+1 and therefore do not create loops, since the only
way is going directly to the destination. From here we create another backward edge to its left neighbor such
that there is no possible other way than traversing towards d from this point. Without this backward edge
loops may be created, since it introduces connections between branches which are not both in a set Si of the
hitting set problem. Therefore, an update of one of the additional connector edges will never lead to a loop,
and the edges can all be included in the update set of the round 2.

The construction of these edges is straightforward. From the end of the current path which is located on
the εoutm segment, we create a delayed edge (over temp) to the very right part of the εin1 segment. From here
we construct the path as described with a short backward edge to its left neighbor and then to the very left
part of the εouti segment and again to the very right part of the εini+1 segment afterwards, until we arrive at
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Figure 7: Connecting the in and out branches of every εi, shown in densely dashed black. The edges shown
in densely dashed grey are needed to keep the path complete and the backward edges in loosely dashed black
are needed to ensure that only the destination can be reached from that point in the second round.

the very left part of the εoutm segment.
It remains to create the segments and branches for the second round. From εoutm , we create a backward

edge to the temp part. From here we use the branching concept and connect all horizontal nodes in-between
the single parts that we created on the line (see Figure 8).

Figure 8: Connecting the segments with forward edges. This creates a single branch from the destination for
every segment due to the merging. The edge shown in loosely dashed grey is connecting this step with the
step before.

In summary, we ensured that already after a single greedy first update round, we end up in a situation
where choosing the maximum set of updateable nodes is equivalent to choosing the minimum hitting set.

4 Polynomial-Time Algorithms

While the computational hardness is disappointing, we can show that there exist several interesting specialized
and approximate algorithms.
Optimal Algorithms. There are settings where an optimal solution can be computed quickly. For instance,
it is easy to see that in the first round, in a configuration with two paths, updating all forward edges is
optimal: Forward edges never introduce any loop, and at the same time we know that backward edges can
never be updated in the first round, as any backward edge alone (i.e., taking effect in the first round), will
immediately introduce a loop. In the following, we first present an optimal algorithm for SLF, for trees with
only two leaves. We will then extend this algorithm to RLF. In the our arXiv report we will also show that
optimal solutions can be computed efficiently if the underlying undirected graph is of bounded tree-width.
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Lemma 1. A maximum SLF update set can be computed in polynomial-time in trees with two leaves.

Proof. Recall that there are three types of new edges in the graph (see also Figure 9): forward edges (F ),
backward edges (B) and horizontal edges (H), hence E =H ∪B ∪F . Moreover, recall that forward edges can
always be updated while backward edges can never be updated in SLF. Thus, the problem boils down to
selecting a maximum subset of H, pointing from one branch to the other. If there is a simple loop C ∈ G
such that HC = E(C) ∩H ≠ ∅, then ∣HC ∣ = 2 and we say that the two edges e1, e2 ∈ HC cross each other,
written e1 × e2.

We observe that the different edge types can be computed efficiently. For illustration, suppose the policy
graph G = (V,E) (the union of old and new policy edges) is given as a straight line drawing Π in the
2-dimensional Euclidean plane, such that the old edges of the 2-branch tree form two disjoint segments which
meet at the root of the tree (the destination), and such that each node is mapped to a unique location. Given
the graph, such a drawing (including crossings) in the plane can be computed efficiently. Also note that there
could be other edges which intersect w.r.t. the drawing Π, but those are not important for us.

Now create an auxiliary graph G′ = (V ′,E′) where V ′ = {ve ∣ e ∈H}, E′ = {(ve1 , ve2) ∣ e1, e2 ∈H ∶ e1 × e2}.
The graph G′ is bipartite, and therefore finding a minimum vertex cover V C ∈ V (G) is equivalent to finding
maximum matching, which can be done in polynomial time. Let H ′ = {e ∣ e ∈H ∶ ve ∈ V C}, then the set H ′ is
a minimum size subset of H which is not updateable. Therefore the set H ∖H ′ is the maximum size subset
of H which we can update in a SLF manner (the complement of H ′ is a maximum independent set in G′ and
therefore, by the definition of the collision graph G′, a maximum updateable set).

We conclude the proof by observing that all these algorithmic steps can be computed in polynomial time.

Figure 9: Concept of horizontal edges shown in loosely dashed grey. Both horizontal edges (v2, v4) and (v5, v1)
are crossing each other. The backward edge (v4, v3) is shown in loosely dashed black and the forward edges
in densely dashed grey. Note that s does not necessarily have to be a leaf.

Lemma 2. A maximum RLF update set can be computed in polynomial-time in trees with two leaves.

Approximation Algorithms. Even in scenarios for which there is no optimal polynomial time scheduling
algorithm, there can exist good approximations. It is easy to observe that there is a reduction to the Maximum
Acyclic Subgraph Problem (MASP) which ensures that both RLF and SLF can be approximated at least as
well as MASP. It is also easy to see that the problem for strong loop-freedom (for SLF) is 1/2-approximable
in general, as the problem boils down to finding a maximum subset of H edges which are safe to update, and
at least half of the H edges are pointing out to the left resp. right, and we can take the majority. Similarly
for RLF: let F be the set of vertices where every v ∈ F appears along a walk between source and destination.
Similar to SLF, at least half of the edges of F are safe to update, and we can find these edges quickly. Also
every e = (u, v) ∈ E(G), where u /∈ F or v /∈ F , is safe to update. So we have at least a 1/2-approximation.

However, for a small number of leaves, even better approximations are possible. The following lemma can
be proven by an approximation preserving reduction to the hitting set problem.

Lemma 3. The optimal SLF schedule is 2/3-approximable in polynomial time in scenarios with exactly three
leaves. For scenarios with four leaves, there exists a polynomial-time 7/12-approximation algorithm.
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5 Related Work

In their seminal work, Reitblatt et al. [21] initiated the study of network updates providing strong, per-packet
consistency guarantees, and the authors also presented a 2-phase commit protocol. This protocol also forms
the basis of the distributed control plane implementation in [3]. Mahajan and Wattenhofer [19] started
investigating a hierarchy of transient consistency properties—in particular also (strong) loop-freedom but for
example also bandwidth-aware updates [1]—for destination-based routing policies. The measurement studies
in [11] and [15] provide empirical evidence for the non-negligible time and high variance of switch updates,
further motivating their and our work. In their paper, Mahajan and Wattenhofer proposed an algorithm
to “greedily” select a maximum number of edges which can be used early during the policy installation
process. This study was recently refined in [7, 8], a parallel work to ours, where the authors also establish a
hardness result for destination based routing (single- and multi-destination). Our work builds upon [19] and
complements the results in [7, 8]: We consider the scheduling complexity of updating arbitrary routes which
are not necessarily destination-based. Interestingly, our results (using a different reduction) show that even
with the requirement that the initial and the final routes are simple paths, the problem is NP-hard. Moreover,
our results hold for both the strong SLF and the relaxed RLF loop-free problem variants introduced in [17].
The SLF can be seen as a special variant of the Dual Feedback Arc Set Problem (FASP) resp. Maximum
Acyclic Subgraph Problem (MASP): important classic problems in approximation theory [12]. In particular,
it is known that dual-FASP/MASP can be 1/2 + ε approximated on general graphs (for arbitrary small
ε). The results presented in this paper also imply that better approximation algorithms and even optimal
polynomial-time algorithms exist for special graph families, namely graph families describing network update
problems; this may be of independent interest. The RLF variant is a new optimization problem, and to the
best of our knowledge, existing bounds are not applicable to this problem. We should note that FASP is
in FPT [4], and the hitting set problem is W[2]-hard [6]. In our hardness construction we actually find a
reduction from hitting set to FASP for particular graph classes. But the reduction is not parameter preserving,
so the W-hierarchy does not collapse. Finally, our model is orthogonal to the network update problems aiming
at minimizing the number of interactions with the controller (the so-called rounds), which we have recently
studied for single [17] and multiple [5] policies, also including additional properties, beyond loop-freedom,
such as waypointing [16]. The two objectives conflict [17], a good approximation for the number of update
edges yields a bad approximation for the number of rounds, and vice versa.

6 Open Problems

An interesting open question regards whether SLF and RLF can be approximated well or even solved optimally
in polynomial time, in graphs of bounded tree width (see our accompanying arXiv report for a longer
discussion). For graphs of bounded tree-width and degree, this is unlikely, due to the related negative results
for the Feedback Arc Set Problem (FASP) [13]. Also, in bounded degree graphs, vertex covering problems [9]
are NP-complete, and these results extend to FASP. However, problems on bounded directed path-width
graphs may be solvable efficiently: none of the negative results for bounded degree graphs on graphs of
bounded directed treewidth seem to be extendable to digraphs of bounded directed pathwidth with bounded
degree. Indeed, we claim that there is a function f ∶N→ N such that for a digraph G of directed path-width k
and maximum degree d, there is an algorithm which runs in time and space nf(k+d) and finds an optimal
solution to the FASP problem.
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