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Abstract. An immediate snapshot object is a high level communication object,
built on top of a read/write distributed system in which all except one processes
may crash. It allows each process to write a value and obtains a set of pairs (pro-
cess id, value) such that, despite process crashes and asynchrony,the sets obtained
by the processes satisfy noteworthy inclusion properties.
Considering ann-process model in which up tot processes are allowed to crash
(t-crash system model), this paper is on the construction oft-resilient immedi-
ate snapshot objects. In thet-crash system model, a process can obtain values
from at least(n − t) processes, and, consequently,t-immediate snapshot is as-
sumed to have the properties of the basic(n − 1)-resilient immediate snapshot
plus the additional property stating that each process obtains values fromat least
(n − t) processes. The main result of the paper is the following. While there is
a (deterministic)(n − 1)-resilient algorithm implementing the basic(n − 1)-
immediate snapshot in an(n− 1)-crash read/write system, there is not-resilient
algorithm in at-crash read/write model whent ∈ [1..(n − 2)]. This means that,
whent < n− 1, the notion oft-resilience is inoperative when one has to imple-
mentt-immediate snapshot for these values oft: the model assumption “at most
t < n − 1 processes may crash” does not provide us with additional computa-
tional power allowing for the design of a genuinet-resilient algorithm (genuine
meaning that such an algorithm would work in thet-crash model, but not in the
(t+ 1)-crash model). To show these results, the paper relies on well-known dis-
tributed computing agreement problems such as consensus andk-set agreement.

Keywords: Asynchronous system, Atomic read/write register, Consensus, Dis-
tributed computability, Immediate snapshot, Impossibility, Iterated model,k-Set
Agreement, Linearizability, Process crash failure, Snapshot object,t-Resilience,
Wait-freedom.

1 Introduction

Immediate snapshot object and iterated immediate snapshotmodel
The immediate snapshot(IS) communication object and the associatediterated imme-
diate snapshot( IIS) model have been introduced in [5,20], and later investigated in [7].
This distributed computing model consists ofn asynchronous processes, among which
any subset of up to(n − 1) processes may crash1, which execute a sequence of asyn-

1 From a terminology point of view, we sayt-failure model(in the present caset-crash model)
if the model allows up tot processes to fail. We keep the termt-resiliencefor algorithms.



chronous rounds. One and only one immediate snapshot (IS) object is associated with
each round, which allows the processes to communicate during this round. More pre-
cisely, for anyx > 0, a process accesses thex-th immediate snapshot only when it
executes thex-th round, and it accesses it only once.

From an abstract point of view, an IS objectIMSP , can be seen as an initially
empty set, which can then contain at mostn pairs (one per process), each made up of
a process index and a value. This object provides the processes with a single operation
denotedwrite_snapshot(), that each process may invoke only once. The invocation
IMSP .write_snapshot(v) by a processpi adds the pair〈i, v〉 to IMSP and returns a
set of pairs belonging toIMSP such that the sets returned to the processes that invoke
write_snapshot() satisfy specific inclusion properties. It is important to notice that, in
the IIS model, the processes access the sequence of IS objects one after the other, in the
same order, and asynchronously.

The noteworthy feature of the IIS model is the following. It has been shown by
Borowsky and Gafni in [7], that this model is equivalent to the usual read/write wait-
free model ((n − 1)-crash model) for task solvability with the wait-freedom progress
condition (any non-faulty process obtains a result). Its advantage lies in the fact that
its runs are more structured and easier to analyze than the runs in the basic read/write
shared memory model [27]. It is also the basis of the combinatorial topology approach
for distributed computing (e.g., [17]). Hence, IS objects constitute the algorithmic foun-
dation of distributed iterated computing models.

It has been shown in [30] that trying to enrich the IIS model with (non trivial)
failure detectors is inoperative. This means that, for example, enriching IIS with the
failure detectorΩ (which is the weakest failure detector that allows consensus to be
solved in the basic read/write communication model [10,24]) does not allow to solve
consensus in such an enriched IIS model. However, it has beenshown in [29] that it
is possible to capture the power of a failure detector (and other partially synchronous
systems) in the IIS model by appropriately restricting its set of runs, giving rise to the
Iterated Restricted Immediate Snapshot(IRIS) model. This approach has been further
investigated in [32].

The IIS model has many interesting features among which the following two are
noteworthy. The first is on the foundation side of distributed computing, namely IIS es-
tablished a strong connection linking distributed computing and algebraic topology (see
[6,17,19,21,33]). The second one lies on the algorithmic and programming side, namely
IIS allows for a recursive formulation of algorithms solving distributed computing prob-
lems. This direction, initiated in [5,15], has also been investigated in [28,31].

Another line of research is investigated in [14]. This paperconsiders models of dis-
tributed computations defined as subsets of the runs of the iterated immediate snapshot
model. In such a context, it uses topological techniques to identify the tasks that are
solvable in such a model.

The(n− 1)-crash model is also calledwait-freemodel [16]. Several progress conditions have
been associated with(n − 1)-resilient algorithms: wait-freedom [16], non-blocking [22], or
obstruction-freedom [18]. (See a unified presentation in Chapter 5 of [31].)



t-Crash model andt-resilient algorithms
The previous basic read/write model and IIS model consider that all but one process
may crash. Differently, at-crash model assumes that at mostt processes may crash,
i.e., by assumption, at least(n − t) of them never crash. As already said, an algorithm
designed for such a model is said to bet-resilient.

One of the most fundamental results of distributed computing is the impossibil-
ity to design a1-resilient consensus algorithm in the1-crashn-process model, be the
communication medium an asynchronous message-passing system [13] or a read/write
shared memory [25]. Differently, other problems, such as renaming (introduced in the
context oft-resilient message-passing systems wheret < n/2 [3]), can be solved by
(n− 1)-resilient algorithms in the(n− 1)crash read/write shared memory model (such
renaming algorithms are described in several textbooks, e.g. [4,31,34]).

Contribution of the paper
When considering thet-crashn-process model wheret < n−1, and assuming that each
correct process writes a value, a process may wait for valueswritten by(n−t) processes
without risking being blocked forever. This naturally leads to the notion of at-crashn-
process iterated model, generalizing the IIS model to any value of t. To this end the pa-
per introduces the notion of ak-immediate snapshot object, which generalizes the basic
(n − 1)-immediate snapshot object. More precisely, when considering a t-immediate
snapshot object in at-crashn-process model, an invocation ofwrite_snapshot() by a
process returns a set including at least(n−t) pairs (while it would return a set ofx pairs
with 1 ≤ x ≤ n if the object was an IS object). Hence, at-immediate snapshot object
allows processes to obtain as much information as possible from the other processes
while guaranteeing progress.

The obvious question is then the implementability of at-immediate snapshot object
in the t-crashn-process model. This question is answered in this paper, which shows
that it is impossible to implement at-IS object in at-crashn-process model when
0 < t < n− 1. More precisely we prove that implementing at-IS object is equivalent2

to implementing consensus whent < n/2 and enables to implement(2t − n + 2)-set
agreement whenn/2 ≤ t < n− 1.

At first glance, this impossibility result may seem surprising. An IS object is a snap-
shot object (a) whose operationswrite() andsnapshot() are glued together in a single
operationwrite_snapshot(), and (b) satisfying an additional property linking the sets
of pairs returned by concurrent invocations (calledImmediacyproperty, Section 2.2).
Then, as already indicated, at-IS object is an IS object such that the sets returned by
write_snapshot() contain at least(n− t) pairs (Output sizeproperty, Section 2.4). The
same Output size property on the sets returned by a snapshot object can be trivially
implemented in at-crashn-process model. Let us callt-snapshot such a constrained
snapshot object. Hence, while at-snapshot object can be implemented in thet-crash
n-process model, at-IS object cannot when0 < t < n− 1.

Roadmap
As previously indicated, the paper is on the computability power oft-IS objects in the

2 A is equivalent to B if A can be (computationally) reduced to B and reciprocally.



t-crash computing model, fort < n − 1. Made up of 7 sections, it has the following
content.

– Section 2 introduces the basic crash-prone read/write system model, immediate
snapshot, ak-set agreement, andk-immediate snapshot (k-IS). It also proves a the-
orem which captures the additional computational power ofk-immediate snapshot
with respect to the basic(n− 1)-immediate snapshot.

– Assuming a majority of processes never crash, i.e. at-crash read/write model in
which t < n/2, Section 3 shows that it is impossible to implementt-immediate
snapshot in such a model. The proof is a reduction of the consensus problem to
t-immediate snapshot.

– Assumingt ≤ n−1, Section 4 presents a reduction oft-immediate snapshot to con-
sensus in at-crash read/write model. When combined with the result of Section 3,
this shows thatt-immediate snapshot and consensus have the same computational
power in anyt-crash model wheret < n/2.

– Assuming at-crash read/write model in whichn/2 ≤ t < n− 1, Section 5 shows
that it is impossible to implementt-immediate snapshot in such a model. The proof
is a reduction of the(2t− n+ 2)-set agreement problem tot-immediate snapshot.

– By a simulation argument, Section 6 shows that consensus is not solvable witht-
immediate snapshot whenn/2 ≤ t < n proving that the computational power of
t-immediate snapshot when0 < t < n/2 is strictly stronger than the computational
power oft-immediate snapshot whenn/2 ≤ t < n.

Finally, Section 7 concludes the paper.

2 Immediate Snapshot,k-Set Agreement,
and k-Immediate Snapshot

2.1 Basic read/write system model

Processes
The computing model is composed of a set ofn ≥ 3 sequential processes denotedp1,
..., pn. Each process is asynchronous which means that it proceeds at its own speed,
which can be arbitrary and remains always unknown to the other processes.

A process may halt prematurely (crash failure), but executes correctly its local al-
gorithm until it possibly crashes. The model parametert denotes the maximal number
of processes that may crash in a run. A process that crashes ina run is said to befaulty.
Otherwise, it iscorrect or non-faulty. Let us notice that, as a faulty process behaves
correctly until it crashes, no process knows if it is corrector faulty. Moreover, due to
process asynchrony, no process can know if another process crashed or is only very
slow.

It is assumed that (a)0 < t < n (at least one process may crash and at least one
process does not crash), and (b) any process, until it possibly crashes, executes the
algorithm assigned to it.



Communication layer
The processes cooperate by reading and writing Single-Writer Multi-Reader (SWMR)
atomic read/write registers [23]. This means that the shared memory can be seen as a
set of arraysA[1..n] where, whileA[i] can be read by all processes, it can be written
only bypi.

Notation
The previous model is denotedCARWn,t[∅] (which stands for “Crash Asynchronous
Read/Write withn processes, among which up tot may crash”). A model constrained
by a predicate ont (e.g.t < x) is denotedCARWn,t[t < x]. Hence, as we assume
at least one process does not crash,CARWn,t[t < n] is a synonym ofCARWn,t[∅],
which (as always indicated) is calledwait-freemodel. When consideringt-crash mod-
els,CARWn,t[t ≤ α] is less constrained thanCARWn,t[t < α− 1].

Shared objects are denoted with capital letters. The local variables of a processpi
are denoted with lower case letters, sometimes suffixed by the process indexi.

2.2 One-shot immediate snapshot object

The immediate snapshot (IS) object was informally presented in the introduction. It
can be seen as a variant of the snapshot object introduced in [1,2]. While a snapshot
object provides the processes with two operations (write() andsnapshot()) which can
be invoked separately by a process (usuallywrite() beforesnapshot()), a immediate
snapshot provides the processes with a single operationwrite_snapshot(). One-shot
means that a process may invokewrite_snapshot() at most once.

Definition
An IS objectIMSP is a set, initially empty, that will contain pairs made up of aprocess
index and a value. Let us consider a processpi that invokesIMSP .write_snapshot(v).
This invocation adds the pair〈i, v〉 to IMSP (contribution ofpi to IMSP ), and returns
to pi a set, called view and denotedviewi, such that the sets returned to the processes
collectively satisfy the following properties.

– Termination. The invocation ofwrite_snapshot() by a correct process terminates.
– Self-inclusion.∀ i : 〈i, v〉 ∈ viewi.
– Validity. ∀ i : (〈j, v〉 ∈ viewi)⇒ pj invokedwrite_snapshot(v).
– Containment.∀ i, j : (viewi ⊆ viewj) ∨ (viewj ⊆ viewi).
– Immediacy.∀ i, j : (〈i, v〉 ∈ viewj)⇒ (viewi ⊆ viewj).

It is relatively easy to show that the Immediacy property canbe re-stated as follows:
∀ i, j :

(

(〈i,−〉 ∈ viewj) ∧ (〈j,−〉 ∈ viewi)
)

⇒ (viewi = viewj).

Implementation
Implementations of an IS object in the wait-free modelCARWn,t[0 < t < n] are
described in [5,15,28,31]. While both a one-shot snapshot object and an IS object sat-
isfy the Self-inclusion, Validity and Containment properties, only an IS object satisfies
the Immediacy property. This additional property creates an important difference, from



which follows that, while a snapshot object is atomic (operations on a snapshot ob-
ject can be linearized [22]), an IS object is not atomic (its operations cannot always be
linearized). However, an IS object is set-linearizable (set-linearizability allows several
operations to be linearized at the same point of the time line[9,26]).

The iterated immediate snapshot(IIS) model
In this model (introduced in [7]), the shared memory is composed of a (possibly infinite)
sequence of IS objects:IMSP [1], IMSP [2], ... These objects are accessed sequentially
and asynchronously by the processes according to the following round-based pattern
executed by each processpi. The variableri is local topi; it denotes its current round
number.

ri ← 0; ℓsi ← initial local state ofpi (including its input, if any);
repeat forever% asynchronous IS-based rounds
ri ← ri + 1;
viewi ← IMSP [ri].write_snapshot(ℓsi);
computation of a new local stateℓsi (which containsviewi)

end repeat.

As indicated in the Introduction, when considering distributed tasks (as formally defined
in [8,21]), the IIS model andCARWn,t[0 < t < n] have the same computational
power [7].

2.3 k-Set agreement

k-Set agreement was introduced by S. Chaudhuri [11] to investigate the relation linking
the number of different values that can be decided in an agreement problem, and the
maximal number of faulty processes. It generalizes consensus which corresponds to the
casek = 1.

A k-set agreement object is a one-shot object that provides theprocesses with a
single operation denotedproposek(). This operation allows the invoking processpi to
propose a value it passes as an input parameter (calledproposedvalue), and obtain a
value (calleddecidedvalue). The object is defined by the following set of properties.

– Termination. The invocation ofproposek() by a correct process terminates.
– Validity. A decided value is a proposed value.
– Agreement. No more thank different values are decided.

It is shown in [6,21,33] that the problem is impossible to solve inCARWn,t[k ≤ t].

2.4 k-Immediate Snapshot

A k-immediate snapshot object (denotedk-IS) is an immediate snapshot object with the
following additional property.

– Output size. The setview obtained by a process is such that|view| ≥ n− k.

Theorem 1. A k-IS object cannot be implemented inCARWn,t[k < t].



Proof To satisfy the output size property, the view obtained by a processpi must contain
pairs from(n− k) different processes. Ift processes crash (e.g. initially), a process can
obtain at most(n− t) pairs. Ift > k, we haven− t < n−k. It follows that, after it has
obtained pairs from(n− t) processes, a process can remain blocked forever waiting for
the(t− k) missing pairs. ✷Theorem 1

Considering the system modelCARWn,t[0 < t < n− 1], the next theorem character-
izes the power of at-IS object in term of the Containment property.

Theorem 2. Considering the system modelCARWn,t[0 < t < n − 1], and at-IS
object, let us assume that all correct processes invokewrite_snapshot(). No process
obtains a view with less than(n − t) pairs. Moreover, if the size of the smallest view
obtained by a process isℓ (ℓ ≥ n− t), there is a setS of processes such that|S| = ℓ ≥
n− t and each process ofS obtains the smallest view or crashes during its invocation
of write_snapshot().

Proof It follows from the Output size property of thet-IS object that no view contains
less than(n − t) pairs. Letview be the smallest view returned by a process, and let
ℓ = |view|. We haveℓ ≥ n− t. Moreover, due to (a) the Immediacy property (namely
(〈i,−〉 ∈ view) ⇒ (viewi ⊆ view)) and (b) the minimality ofview, it follows that
viewi = view. As this is true for each process whose pair participates inview, and
ℓ = |view|, it follows that there is a setS of processes such that|S| = ℓ ≥ n − t
and each of its processes obtains the viewview, or crashed during its invocation of
write_snapshot(). Due to the Containment property, the others processes crash or obtain
views which strictly includeview. ✷Theorem 2

3 t-Immediate Snapshot is Impossible in
CARWn,t[0 < t < n/2]

This section shows that it is impossible to implement at-IS object when0 < t < n/2.

From t-IS to consensus inCARWn,t[0 < t < n/2]
Algorithm 1 reduces consensus tot-IS in the system modelCARWn,t[0 < t < n/2].
As at mostt < n/2 process may crash, at leastn − t > n/2t processes invoke the
consensus operationpropose

1
().

operation propose1(v) is
(1) viewi ← IMSP .write_snapshot(v); V IEW [i]← viewi;
(2) wait(|{ j such thatV IEW [j] 6= ⊥}| = t+ 1);
(3) let view be the smallest of the previous(t+ 1) views;
(4) return(smallest proposed value inview)
end operation.

Algorithm 1: Solving consensus inCARWn,t[0 < t < n/2, t-IS] (code forpi)



In addition to at-IS object denotedIMSP , the processes access an arrayVIEW [1..n]
of SWMR atomic registers, initialized to[⊥, · · · ,⊥]. The aim ofVIEW [i] is to store
the view obtained bypi from thet-IS objectIMSP .

When it callspropose
1
(v), a processpi invokes first thet-IS object, in which it

deposits the pair〈i, v〉, and obtains a view from it, that it writes inVIEW [i] to make it
publicly known (line 1). Then, it waits (line 2) until it seesthe views of at least(t+ 1)
processes (asn − t ≥ t + 1, pi cannot block forever and at least one of these views is
from a correct process). Processpi extracts then of these views the one with the smallest
cardinality (line 3), and finally returns proposed value contained in this smallest view
(line 4).

Theorem 3. Algorithm1 reduces consensus tot-IS in CARWn,t[0 < t < n/2].

Proof Let us first prove the consensus Termination property. Asn − t ≥ t + 1, and
there are at least(n − t) correct processes, it follows that at least(n − t) entries of
VIEW [1..n] are eventually different from⊥. Hence, no correct process can remain
blocked forever at line 2, which proves consensus Termination.

Let us now consider the consensus Agreement property. It follows from Theorem 2
that there is a set of at leastℓ ≥ n−t processes, that obtained the same viewmin_view
(or crashed before returning fromwrite_snapshot()), and this view is the smallest view
obtained by a process and its size is|min_view| = ℓ. Asℓ ≥ n−t and(n−t)+(t+1) >
n, it follows from the waiting predicate of line 2, that, any process that executes line 3,
obtains a copy ofmin_view, and consequently we haveview = min_view at line 3.
It follows that no two processes can decide different values.

Finally, the consensus Validity property follows from the fact that any pair contained
in a view is composed of a process index and the value proposedby the corresponding
process. ✷Theorem 3

Corollary 1. Implementing at-IS object inCARWn,t[0 < t < n/2] is impossible.

Proof The proof is an immediate consequence of Lemma 3, and the factthat consensus
cannot be solved inCARWn,t[0 < t < n/2] [25]. ✷Corollary 1

4 From Consensus tot-IS in CARWn,t[0 < t ≤ n − 1]

Algorithm 2 describes a reduction oft-IS to consensus inCARWn,t[0 < t ≤ n −
1]. This algorithm uses two shared data structures. The first isan arrayREG [1..n] of
SWMR atomic registers (whereREG [i] is associated withpi). The second is an array
of (t+ 1) consensus objects denotedCONS [(n− t)..n].

The invocation ofwrite_snapshot(vi) by a processpi depositsvi in REG [i], and
launches two underlying tasksT1 andT2. The taskT2 is a simple waiting task, which
will return a view to the calling processpi. Thereturn() statement at line 9 terminates
thewrite_snapshot() operation invoked bypi. The termination ofT2 does not kill the
taskT1 which may continue executing.



operationwrite_snapshot(vi) is
(1) REG[i]← vi; viewi ← ∅; deci ← ∅; k ← −1; launch the tasksT1 andT2.

(2) task T1 is
(3) repeatk ← k + 1;
(4) wait

(

∃ a setauxi: (deci ⊂ auxi) ∧ (|auxi| = n− t+ k)
∧ (auxi ⊆ {〈j,REG[j]〉 such thatREG[j] 6= ⊥})

)

;
(5) deci ← CONS [n− t+ k].propose1(auxi);
(6) if (〈i, vi〉 ∈ deci) ∧ (viewi = ∅) then viewi ← deci end if
(7) until (k = t) end repeat
(8) end taskT1.

(9) task T2 iswait(viewi 6= ∅); return(viewi) end taskT2.
end operation.

Algorithm 2: Implementingt-IS in CARWn,t[0 < t < n/2,CONS] (code forpi)

TaskT1 (lines 2-8) has two aims: providepi with a viewviewi (line 6), and prevent
processes from deadlocking, thereby allowing them to terminate. It consists in a loop
that is executed(t + 1) times. The aim of thek-th iteration (starting atk = 0) is to
allow processes to obtain a view including(n − t + k) pairs. More precisely, we have
the following.

– When it enters thek-th iteration, a processpi first waits until it obtains a set of pairs,
denotedauxi, which (a) contains(n− t+ k) pairs, (b) contains the set set of pairs
deci decided during the previous iteration, and (c) contains only pairs extracted
from the arrayREG [1..n]. This is captured by the predicate of line 4.

– Then,pi proposes the setauxi to the consensus objectCONS [n−t+k] associated
with the current iteration step (line 5). The set decided is stored indeci.

– Finally, if its pair 〈i, vi〉 belongs todeci andpi has not yet decided (i.e., no set
has yet been assigned toviewi), it does it by writingdeci in viewi. Let us notice
that this ensures the Self-inclusion property of thet-IS object. Moreover, a process
decides no more than once.
Whether a process decides or not during the current iterationstep, it systematically
proceeds to the next iteration step. Hence, a process that obtains its view during an
iteration stepx can help other processes to obtain a view during later iteration steps
y > x.

Theorem 4. Algorithm2 reducest-IS to consensus inCARWn,t[0 < t ≤ n− 1].

Proof The Self-inclusion property follows directly from the predicate〈i, vi〉 ∈ deci
used before assigningdeci to viewi at line 6.

The Validity property follows from (a) the fact that a processpi assigns the value it
wants to deposit in thet-IS object inREG [i], (b) this atomic variable is written at most
once (line 1), and (c) the predicateREG [j] 6= ⊥ is used at line 4 to extract values from
REG [1..n].



The Output size property follows from the predicate of line 4, which requires that
any setauxi (and consequently any setdeci output by a consensus object) contains at
least(n− t) pairs.

To prove the Immediacy property, let us consider any two processespi andpj such
that 〈j, vj〉 ∈ viewi and〈i, vi〉 ∈ viewj . Let decx[k] denote the local variabledecx
afterpx assigned it a value at line 5 during iteration stepk.

Let ki be the iteration step at whichpi assignsdeci to viewi (due to the predicate
viewi = ∅ used at line 5, such an assignment is done only once). It follows from the
first predicate of line 6, that〈i, vi〉 ∈ deci[ki] = viewi (otherwise,viewi would not
be assigneddeci); kj , decj , andviewj being defined similarly, we also have〈j, vj〉 ∈
decj [kj ] = viewj . As by assumption we have〈j, vj〉 ∈ viewi and 〈i, vi〉 ∈ viewj ,
we also have{〈i, vi〉, 〈j, vj〉} ⊆ deci[ki] = viewi and{〈i, vi〉, 〈j, vj〉} ⊆ decj [kj ] =
viewj . Due to the Agreement property of the consensus objects, we havedeci[ki] =
decj [ki], anddeci[kj ] = decj [kj ].

Let us assume thatki < kj . This is not possible because, on the one side,〈j, vj〉 ∈
deci[ki] = decj [ki], and, on the other side,kj is the only iteration step at which we
have〈j, vj〉 ∈ decj ∧ viewj = ∅ (and consequentlyviewj is assigned the value in
decj [kj ]). For the same reason, we cannot haveki > kj . It follows thatki = kj . Hence,
asdeci[ki] = decj [ki], pi andpj obtain the very same view (and this occurs during the
same iteration step).

As far as the Containment property is concerned, we have the following. Consider-
ing the iteration numberk, let us first observe that, due to the predicate|auxi| = n−t+k
(line 4), the set output byCONS [n − t + k] containsn − t + k pairs. Hence, the se-
quence of consensus outputs sets whose size is increased by1 at each instance. Let
us now observe that, due to the predicatedeci ⊂ auxi (line 4), the set output by
CONS [n − t + k + 1] is a superset of the set output by the previous consensus in-
stanceCONS [n− t+ k]. It follows that the sequence of pairs output by the consensus
instances is such that each set of pairs includes the previous set plus one new element,
from which the Containment property follows.

As far as the Termination property is concerned, letp be the number of processes
that have deposited a value inREG [1..n]. We haven − t ≤ p ≤ n. It follows from
the predicate in the wait statement (line 4), that no processcan block forever at this
line for k ∈ [0..p − n + t]. As there are at least(n − t) correct processes, and none of
them can be blocked forever at line 4, it follows that each of them invokesCONS [n−
t + k].propose

1
() (line 5), for eachk ∈ [0...p − n + t]. Hence, the only reason for a

correct process not to obtain a view (and terminate), is to never execute the assignment
viewi ← deci at line 7.

The sequence of consensus instances outputs a sequence of sets of pairs whose
successive sizes are(n − t), (n − t + 1), ...,p, which means that the identity of every
of the p processes that wrote inREG [1..n] appears at least once in the sequence of
consensus outputs. Hence, for each correct processpi, there is a consensus instance



whose outputdec is such that, whileviewi = ∅, we have〈i, vi〉 ∈ dec, which concludes
the proof of the Termination property. ✷Theorem 4

Corollary 2. Consensus andt-IS are equivalent inCARWn,t[0 < t < n/2].

Proof The proof follows from Theorem 3 (Algorithm 1) and Theorem 4 (Algorithm 2).
✷Theorem 2

5 t-Immediate Snapshot is Impossible in
CARWn,t[n/2 ≤ t < n − 1]

This section shows that it is impossible to implement at-IS object inCARWn,t[n/2 ≤
t < n − 1]. To this end, it presents a reduction ofk-set agreement (in shortk-SA) to
t-IS for k = 2t − n + 2 (e.g., a reduction of(n − 2)-SA agreement to(n − 2)-IS in
CARWn,t[t = n− 2]).

From t-IS to(2t− k + 2)-set agreement inCARWn,t[n/2 ≤ t < n− 1, t-IS]
Algorithm 3 reduces(2t−n+2)-set agreement tot-IS inCARWn,t[n/2 ≤ t < n−1].
As at mostt process may crash, at least(n − t) processes invoke thek-SA operation
proposek(). This algorithm is very close to Algorithm 1. Its main difference lies in the
replacement of(t+ 1) by (n− t) at line 2.

operation propose2t−n+2(v) is
(1) viewi ← IMSP .write_snapshot(v); VIEW [i]← viewi;
(2) wait(|{ j such thatVIEW [j] 6= ⊥}| = n− t);
(3) let view be the smallest of the previous(n− t) views;
(4) return(smallest proposed value inview)
end operation.

Algorithm 3: Solving(2t−n+2)-set agreement inCARWn,t[n/2 ≤ t < n− 1, t-IS]
(code forpi)

Theorem 5. Algorithm3 reduces(2t−n+2)-set agreement tot-IS in CARWn,t[n/2 ≤
t < n− 1].

Proof Let k = 2t− n+ 2.
Let us first consider thek-SA Termination property. There are at least(n−t) correct

processes, and each of them first invokesIMSP .write_snapshot() and then writes the
view it obtained in the shared arrayVIEW (line 1). Hence, at least(n − t) entries of
VIEW are eventually different from⊥, from which follows that no process can block
forever at line 2.



Let us now consider thek-SA Validity property. It follows from the Containment
property of thet-IS object that any set of views deposited inVIEW is not empty. There-
fore, the view selected by a process at line 3 is not empty. As aview can only contain
pairs, each including a proposed value (line 1), thek-SA Validity property follows.

Let us finally consider thek-SA Agreement property. Let us first observe that, due
to the t-IS Containment property and Theorem 2, at mostn − (n − t) + 1 = t + 1
different views can be written in the arrayVIEW [1..n]. LetV (1) the smallest of these
views (which containsℓ ≥ n − t pairs),V (2) the second smallest, etc., untilV (t + 1)
the greatest one. There are two cases according to the(n− t) non-⊥ views obtained by
a processpi at line 2. Let us remind that, asn ≤ 2t, we haven− t ≤ t.

– Case 1. The viewV (1) belongs to the(n− t) views obtained bypi. In this case,pi
selectsV (1) at line 3 and decides at line 4 the smallest proposed value contained
in V (1).

– Case 2. The viewV (1) does not belong to the(n− t) views obtained bypi. Hence,
the(n−t) views obtained by any process of Case 2 belong to{V (2), · · · , V (t+1)}.
It follows that them = (n − t) − 1 biggest views in{V (2), · · · , V (t + 1)} will
never be selected be the processes that are in Case 2, and consequently the set of
these processes obtain at mostt −m = t − ((n − t) − 1) = 2t − n + 1 different
smallest views. Hence, these processes may decide at most2t − n + 1 different
values at line 4.

When combining the two cases, at mostk = 2t−n+2 different values can be decided,
which concludes the proof of the theorem. ✷Theorem 5

Corollary 3. Implementing at-IS object inCARWn,t[n/2 ≤ t < n−1] is impossible.

Proof As t ≤ n − 2, we have2t − n + 2 ≤ t. The proof is an immediate conse-
quence of Theorem 5, and the fact that(2t− n+ 2)-set agreement cannot be solved in
CARWn,t[n/2 ≤ t < n− 1] [5,21,33]. ✷Corollary 3

6 t-Immediate Snapshot and Consensus in
CARWn,t[n/2 ≤ t < n − 1]

Theorem 6. There is not-resilient consensus algorithm usingt-immediate snapshot in
CARWn,t[n/2 ≤ t < n− 1].

The proof the theorem is by contradiction. It assume that there is at-resilient con-
sensus algorithmA for a set of processes{p1, · · · , pn}, which uses at-immediate snap-
shot object in a system wheren = 2t (the cases for the other values oft can easily be
reduced to this case).

The contradiction is obtained by simulatingA with two processesQ0 andQ1, such
thatQ0 andQ1 solve consensus despite the possible crash of one of them. Asthere
is no wait-free consensus algorithm for 2 processes, it follows that such a consensus
algorithmA based ont-immediate snapshot objects does not exist. The proof can be
found in [12].



7 Conclusion

This paper addressed the design oft-tolerant algorithms building at-immediate snap-
shot (t-IS) object. Such an object in an immediate snapshot object (defined by Ter-
mination, Self-inclusion, Containment, and Immediacy properties), in at-crash asyn-
chronous system. Hence, it is required that each set returned to a process contains at
least(n− t) pairs. Immediate snapshot corresponds to(n− 1)-immediate snapshot.

1 ≤ t < n/2 n/2 ≤ t < n− 1

t-IS implementst-CONS (Th. 3) t-IS implements(2t− n+ 2)-Set agreement (Th. 5)
t-IS does not implementt-CONS (Th.6)

t-CONS implementst-IS (Th. 4) t-CONS implementst-IS (Th. 4)

Table 1.Summary of results presented in the paper

The paper has shown that, while it is possible to build an(n − 1)-IS object in the
asynchronous read/write(n − 1)-crash model, it is impossible to build at-IS object in
an asynchronous read/writet-crash model when0 < t < n − 1. It follows that the
notion of an IIS distributed model seems inoperative for these values oft. The results
of the paper are summarized in Table 1 wheret-CONS denotes the consensus in the
presence of up tot process crashes.

Interestingly, this study shows that there are two contrasting impossibility results in
asynchronous read/writet-crashn-process systems. Consensus is impossible as soon as
t > 0, while t-immediate snapshot is impossible as soon ast < n− 1.

As a final remark, some computability problems remain open. As an example, is it
possible to implement at-IS object from(2t− n+ 2)-Set agreement?
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