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Abstract
We consider the problem of collectively delivering some message from a specified source to a
designated target location in a graph, using multiple mobile agents. Each agent has a limited
energy which constrains the distance it can move. Hence multiple agents need to collaborate to
move the message, each agent handing over the message to the next agent to carry it forward.
Given the positions of the agents in the graph and their respective budgets, the problem of finding
a feasible movement schedule for the agents can be challenging. We consider two variants of the
problem: in non-returning delivery, the agents can stop anywhere; whereas in returning delivery,
each agent needs to return to its starting location, a variant which has not been studied before.

We first provide a polynomial-time algorithm for returning delivery on trees, which is in
contrast to the known (weak) NP-hardness of the non-returning version. In addition, we give
resource-augmented algorithms for returning delivery in general graphs. Finally, we give tight
lower bounds on the required resource augmentation for both variants of the problem. In this
sense, our results close the gap left by previous research.
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1 Introduction

We consider a team of mobile robots which are assigned a task that they need to perform
collaboratively. Even simple tasks such as collecting information and delivering it to a target
location can become challenging when it involves the cooperation of several agents. The
difficulty of collaboration can be due to several limitations of the agents, such as limited
communication, restricted vision or the lack of persistent memory, and this has been the
subject of extensive research (see [18] for a recent survey). When considering agents that
move physically (such as mobile robots or automated vehicles), a major limitation of the
agents are their energy resources, which restricts the travel distance of the agent. This is
particularly true for small battery operated robots or drones, for which the energy limitation
is the real bottleneck. We consider a set of mobile agents where each agent i has a budget
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Bi on the distance it can move, as in [2, 8]. We model their environment as an undirected
edge-weighted graph G, with each agent starting on some vertex of G and traveling along
edges of G, until it runs out of energy and stops forever. In this model, the agents are obliged
to collaborate as no single agent can usually perform the required task on its own.

The problem we consider is that of moving some information from a given source location
to a target location in the graph G using a subset of the agents. Although the problem sounds
simple, finding a valid schedule for the agents to deliver the message, is computationally hard
even if we are given full information on the graph and the location of the agents. Given a
graph G with designated source and target vertices, and k agents with given starting locations
and energy budgets, the decision problem of whether the agents can collectively deliver
a single message from the source to the target node in G is called BudgetedDelivery.
Chalopin et al. [8, 9] showed that Non-Returning BudgetedDelivery is weakly NP-hard
on paths and strongly NP-hard on general graphs.

Unlike previous papers, we also consider a version of the problem where each agent needs
to return to its starting location after completing its task. This is a natural assumption, e.g.
for robots that need to return to their docking station for maintenance or recharging. We
call this variant Returning BudgetedDelivery. Surprisingly, this variant of the problem
is easier to solve when the graph is a tree (unlike the original version of the problem), but
we show it to be strongly NP-hard even for planar graphs. We present a polynomial time
algorithm for solving Returning BudgetedDelivery on trees.

For arbitrary graphs, we are interested in resource-augmented algorithms. Since finding a
feasible schedule for BudgetedDelivery is computationally hard when the agents have just
enough energy to make delivery possible, we consider augmenting the energy of each robot by
a constant factor γ, to enable a polynomial-time solution to the problem. Given an instance
of BudgetedDelivery and some γ > 1, we have a γ-resource-augmented algorithm, if the
algorithm, running in polynomial time, either (correctly) answers that there is no feasible
schedule, or finds a feasible schedule for the modified instance with augmented budgets
B̂i = γ ·Bi for each agent i.

Our Model. We consider an undirected edge-weighted graph G = (V,E) with n = |V |
vertices and m = |E| edges. The weight w(e) of an edge e ∈ E defines the energy required
to cross the edge in either direction. We have k mobile agents which are initially placed
on arbitrary nodes p1, . . . , pk of G, called starting positions. Each agent i has an initially
assigned budget Bi ∈ R≥0 and can move along the edges of the graph, for a total distance of
at most Bi (if an agent travels only on a part of an edge, its travelled distance is downscaled
proportionally to the part travelled). The agents are required to move a message from a
given source node s to a target node t. An agent can pick up the message from its current
location, carry it to another location (a vertex or a point inside an edge), and drop it there.
Agents have global knowledge of the graph and may communicate freely.

Given a graph G with vertices s 6= t ∈ V (G) and the starting nodes and budgets for the
k agents, we define BudgetedDelivery as the decision problem of whether the agents can
collectively deliver the message without exceeding their individual budgets. In Returning
BudgetedDelivery each agent needs to return to its respective starting position before
using up its energy budget; in the Non-Returning version we do not place such a restriction
on the agents and an agent may terminate at any location in the graph.
A solution to BudgetedDelivery is given in the form of a schedule which prescribes for
each agent whether it moves and if so, the two locations in which it has to pick up and drop
off the message. A schedule is feasible if the message can be delivered from s to t.
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Related Work. Delivery problems in the graph have been usually studied for a single agent
moving in the graph. For example, the well known Travelling salesman problem (TSP) or
and the Chinese postman problem (CPP) require an agent to deliver packets to multiple
destinations located in the nodes of the graph or the edges of the graph. The optimization
problem of minimizing the total distance traveled is known to be NP-hard [3] for TSP, but
can be solved in polynomial time for the CPP [17].

When the graph is not known in advance, the problem of exploring a graph by a single
agent has been studied with the objective of minimizing the number of edges traversed (see
e.g. [22, 1]). Exploration by a team of two agents that can communicate at a distance, has
been studied by Bender and Slonim [5] for digraphs without node identifiers. The model of
energy-constrained robot was introduced by Betke et al. [6] for single agent exploration of
grid graphs. Later Awerbuch et al. [4] studied the same problem for general graphs. In both
these papers, the agent could return to its starting node to refuel and between two visits to
the starting node, the agent could traverse at most B edges. Duncan et al. [14] studied a
similar model where the agent is tied with a rope of length B to the starting location and
they optimized the exploration time, giving an O(m) time algorithm.

For energy-constrained agents without the option of refuelling, multiple agents may be
needed to explore even graphs of restricted diameter. Given a graph G and k agents starting
from the same location, each having an energy constraint of B, deciding whether G can be
explored by the agents is NP-hard, even if graph G is a tree [19]. Dynia et al. studied the
online version of the problem [15, 16]. They presented algorithms for exploration of trees by
k agents when the energy of each agent is augmented by a constant factor over the minimum
energy B required per agent in the offline solution. Das et al. [11] presented online algorithms
that optimize the number of agents used for tree exploration when each agent has a fixed
energy bound B. On the other hand, Dereniowski et al. [13] gave an optimal time algorithm
for exploring general graphs using a large number of agents. Ortolf et al. [21] showed bounds
on the competitive ratio of online exploration of grid graphs with obstacles, using k agents.

When multiple agents start from arbitrary locations in a graph, optimizing the total
energy consumption of the agents is computationally hard for several formation problems
which require the agents to place themselves in desired configurations (e.g. connected or
independent configurations) in a graph. Demaine et al. [12] studied such optimization
problems and provided approximation algorithms and inapproximability results. Similar
problems have been studied for agents moving in the visibility graphs of simple polygons and
optimizing either the total energy consumed or the maximum energy consumed per agent
can be hard to approximate even in this setting, as shown by Bilo et al. [7].

Anaya et al. [2] studied centralized and distributed algorithms for the information exchange
by energy-constrained agents, in particular the problem of transferring information from
one agent to all others (Broadcast) and from all agents to one agent (Convergecast). For
both problems, they provided hardness results for trees and approximation algorithms for
arbitrary graphs. The budgeted delivery problem was studied by Chalopin et al. [8] who
presented hardness results for general graphs as well as resource-augmented algorithms. For
the simpler case of lines, [9] proved that the problem is weakly NP-hard and presented a
quasi-pseudo-polynomial time algorithm. Czyzowicz et al. [10] recently showed that the
problems of budgeted delivery, broadcast and convergecast remain NP-hard for general
graphs even if the agents are allowed to exchange energy when they meet.

Our Contribution. This is the first paper to study the Returning version of Budgeted-
Delivery. We first show that this problem can be solved in O(n+ k log k) time for lines

SIROCCO’16



4 Collaborative Delivery with Energy-Constrained Mobile Robots

and trees (Section 2). This is in sharp contrast to the Non-Returning version which was
shown to be weakly NP-hard [9] even on lines. In Section 4, we prove that Returning
BudgetedDelivery is NP-hard even for planar graphs. For arbitrary graphs with arbitrary
values of agent budgets, we present a 2-resource-augmented algorithm and we prove that this
is the best possible, as there exists no (2− ε)-resource-augmented algorithm unless P = NP
(Section 5). We show that this bound can be broken when the agents have the same energy
budget and we present a (2− 2/k)-resource-augmented algorithm for this case.

For the Non-Returning version of the BudgetedDelivery, we close the gaps left open
by previous research [8, 9]. In particular we prove that this variant of the problem is also
strongly NP-hard on planar graphs, while it was known to be strongly NP-hard for general
graphs and weakly NP-hard on trees. We also show tightness of the 3-resource-augmented
algorithm for the problem, presented in [8]. Finally, in Section 6, we investigate the source
of hardness for BudgetedDelivery and show that the problem becomes easy when the
order in which the agents pick up the message is known in advance.

2 Returning BudgetedDelivery on the Tree

We study the Returning BudgetedDelivery on a tree and show that it can be solved in
polynomial time. We immediately observe that this problem is reducible to the Returning
BudgetedDelivery on a path: There is a unique s-t path on a tree and we can move each
agent from her starting position to the nearest node on this s-t path while subtracting from
her budget twice the distance traveled. The path problem now has an equivalent geometric
representation on the line: the source node s, the target node t, and the starting positions
of the agents pi are coordinates of the real line. Without loss of generality, s < t, i.e., the
message needs to be delivered from left to right.

Without loss of generality, we consider schedules in which every agent i that moves uses
all its budget Bi. Because every agent needs to return to its starting position, an agent i can
carry the message on any interval of size Bi/2 that contains the starting position pi. For
every agent i, let li = pi − Bi/2 denote the leftmost point where she can pick a message,
and let ri = pi + Bi/2 be the rightmost point to where she can deliver the message. The
Returning BudgetedDelivery on a line now becomes the following covering problem: Can
we choose, for every i, an interval Ii of size Bi/2 that lies completely within the region [li, ri]
such that the segment [s, t] is covered by the chosen intervals, i.e., such that [s, t] ⊆ ∪iIi?

The following greedy algorithm solves the covering problem. The algorithm works
iteratively in rounds r = 1, 2, . . .. We initially set s1 = s. We stop the algorithm whenever
sr ≥ t, and return true. In round r, we pick i∗ having the smallest ri∗ among all agents i
with li ≤ sr < ri, and set sr+1 = min{ri∗ , sr +Bi∗/2} and Ii∗ = (sr+1 −Bi∗/2, sr+1), and
continue with the next round r+ 1. If we cannot choose i∗, we stop the algorithm and return
false.

I Theorem 1. There is an O(n+k log k)-time algorithm for Returning BudgetedDelivery
on a tree.

Proof. The reduction from a tree to a path takes O(n) time using breadth-first search from
s and the algorithm greedy can be implemented in time O(k log k) using a priority queue.

For the correctness, we now show that greedy returns a solution to the covering problem
if and only if there exists one. Greedy can be seen as advancing the cover of [s, t] from left
to right by adding intervals Ii. Whenever it decides upon Ii, it will set sr to the respective
endpoint of Ii, and never ever consider i again or change the placement of Ii within the
boundaries [li, ri]. Thus, whenever sr ≥ t, the intervals Ii form a cover of [s, t].
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sr+1 s∗r+2 s∗r+3 sr+1 sr+2 sr+3

pi∗j+δ pi∗j+1

pi∗j+δ pi∗j+1

ri∗j+δli∗j+δ li∗j+1
ri∗j+1

li∗j+δ li∗j+1
ri∗j+1

ri∗j+δ

swapping
i∗j+1 and i∗j+δ

Figure 1 Changing the order of agents i∗j+1 and i∗j+δ in the schedule.

We now show that if a cover exists, greedy finds one. Observe first that a cover can be
given by a subset of the agents {i1, . . . , it}, t ≤ k, and by their ordering (i1, i2, . . .), according
to the right endpoints of their intervals Iij , since we can reconstruct a covering by always
placing the respective interval Iij at the rightmost possible position.

Suppose, for contradiction, that greedy fails. Let (i∗1, i∗2, . . .) be a minimal cover of [s, t]
that agrees with the greedy schedule (i1, i2, . . .) in the maximum number of first agents
i1, . . . , ij . Hence, j + 1 is the first position such that i∗j+1 6= ij+1. The left endpoints of I∗j+1
and Ij+1 correspond to sr+1 in our algorithm. If agent ij+1 does not appear in the solution
(i∗1, i∗2, . . .), adding ij+1 to that solution and deleting some of the subsequent ones, results in
a minimal cover that agrees on the first j + 1 agents, a contradiction.

If agent ij+1 appears in the solution (i∗1, i∗2, . . .), say, as agent i∗j+δ, then we modify this
cover by swapping i∗j+1 with i∗j+δ. We claim that the new solution still covers [s, t]. This
follows immediately by observing that greedy chose ij+1 to have smallest ri among all agents
that can extend the covering beyond sr+1. Since every agent i covers at least half of its region
[li, ri], we know that i∗j+1 and i∗j+δ together cover the region [sr+1, ri∗

j+δ
], and therefore by

minimality i∗j+δ = i∗j+2. Finally, if we change the order of the two agents, they will still cover
the region [sr+1, ri∗

j+δ
] (see Figure 1). J

3 Resource Augmentation Algorithms

We now look at general graphs G = (V,E). As we will see in the next section, Budgeted-
Delivery is NP-hard, hence we augment the budget of each agent by a factor γ > 1
to allow for polynomial-time solutions. For non-returning agents, a min

{
3, 1 + max Bi

Bj

}
-

resource-augmented algorithm was given by Chalopin et. al. [8]. We first provide a 2-resource-
augmented algorithm for Returning BudgetedDelivery. This is tight as there is no
polynomial-time (2 − ε)-resource-augmented algorithm, unless P = NP (Section 5). If,
however, the budgets of the agents are similar, we can go below the 2-barrier: In this case,
we present a

(
1 + k−2

k max Bi
Bj

)
-resource-augmented algorithm. Throughout this section, we

assume that there is no feasible schedule with a single agent, which we can easily verify.

Preliminaries. We denote by d(u, v) the distance of two points u, v ∈ G. Assume an agent
i with budget Bi starts in u and moves to v. Which locations in the graph (vertices and
positions on the edges) are still reachable by i so that he has sufficent energy to move back
to u? We define the ellipsoid E(u, v,Bi) = {p ∈ G | d(u, v) + d(v, p) + d(p, u) ≤ Bi} and the
ball B(u, Bi2 ) = E(u, u,Bi). It is easy to see that E(u, v,Bi) can be (i) computed in polynomial
time by running Dijkstra’s shortest path algorithm from both u and v and (ii) represented
in linear space: We store all p ∈ V with p ∈ E(u, v,Bi), and for each edge (p, q) ∈ E with
p ∈ E(u, v,Bi), q /∈ E(u, v,Bi) we store the furthest point of (p, q) still reachable by i.

I Theorem 2 (2-resource-augmentation). There is a polynomial-time 2-resource-augmented
algorithm for Returning BudgetedDelivery.

SIROCCO’16



6 Collaborative Delivery with Energy-Constrained Mobile Robots

s

p1 p7

t

p1 p7
p2

p3

p4

p5

p6

h3

h1

s = h0 t = h7

Figure 2 (left) Feasible schedule. (right) Schedule with
(
1 + 5

7 max Bj
Bi

)
-resource-augmentation.

Proof. Denote by pi the starting position of agent i. We consider the balls Bi := B(pi, Bi2 )
around all agents, as well as the balls B(s, 0) and B(t, 0) of radius 0 around s and t. We
compute the intersection graph GI of the balls, which can be done in polynomial time. If
there is a feasible schedule, then there must be a path from B(s, 0) to B(t, 0) in GI (for
example the path given by the balls around the agents in the feasible schedule).

If there is no path from B(s, 0) to B(t, 0), then the algorithm outputs that there is
no feasible schedule with non-augmented budgets. Otherwise we can get a 2-resource-
augmentation as follows: Pick a shortest path from B(s, 0) to B(t, 0) in GI and denote by
` ≤ k the number of agents on this path, labeled without loss of generality 1, 2, . . . , `. For
each edge on the shortest path, we specify a handover point hi ∈ Bi ∩ Bi+1 in G (where we
set h0 = s and h` = t). Then each agent i, i = 1, . . . , ` walks from its starting position pi to
the handover point hi−1 to pick up the message, goes on to the handover point hi to drop
the message there, and returns home to pi. Since hi−1, hi ∈ B(pi, Bi2 ), the budget needed by
agent i to do so is at most d(pi, hi−1) + d(hi−1, hi) + d(hi, pi) ≤ Bi

2 + 2 · Bi2 + Bi
2 = 2 ·Bi. J

I Theorem 3. There is a polynomial-time
(
1 + k−2

k max Bj
Bi

)
-resource-augmented algorithm

for Returning BudgetedDelivery.

Proof. We first “guess” the first agent a and the last agent b of the feasible schedule (by trying
all

(
k
2
)
pairs). In contrast to Theorem 2, we can in this way get a 2-resource-augmented

solution in which a and b only need their original budgets. Intuitively, we can evenly
redistribute the remaining part of B̂a and B̂b among all k agents, such that for each agent
i we have B̂i ≤ Bi + k−2

k maxBj . Without loss of generality, we assume that agent a
walks from its starting position on a shortest path to s to pick up the message, and that
agent b walks home directly after dropping the message at t. Hence consider the ellipsoids
Ba := E(pa, s, Ba) and Bb := E(pb, s, Bb) as well as the balls Bi := B(pi, Bi2 ) around the
starting positions of all other agents and compute their intersection graph GI .

We denote by i = 1, . . . , ` the agents on a shortest path from Ba to Bb in GI (if any),
where a = 1, b = ` ≤ k and we specify the following points: h0 = s, hi ∈ Bi∩Bi+1, and h` = t.
If the agents handover the message at the locations hi, we get a 2-resource-augmentation
where the agents 1 and ` use only their original budget. Instead we let them help their
neighbours 2 and `− 1 by `−2

` B2 and `−2
` B`−1, respectively. Those agents further propagate

the surplus towards the agent(s) in the middle, see Figure 2 (right). We achieve a resource
augmentation of 1 + `−2

` max Bj
Bi
≤ 1 + k−2

k max Bj
Bi

. Details are given in Appendix A. J

4 Hardness for Planar Graphs

In this section, we show that BudgetedDelivery in a planar graph is strongly NP-hard,
both for the Returning version and the Non-Returning version. Both proofs are based on the
same reduction from Planar3SAT.
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v1 ∨ v2 v2 ∨ v3 ∨ v4

v1 ∨ v2 ∨ v4 v2 ∨ v3 ∨ v4

v1 v2 v3

v4

v4 s t
true

false

true

false true

false

true

false

v2v1 v3 v4

c2,3 c3,4

l2,c l3,c l4,c

Figure 3 (left) A plane embedding of a 3CNF F which is satisfied by (v1, v2, v3, v4) =
(true, false, false, true). (right) Its transformation to the corresponding delivery graph.

Planar 3SAT. Let F be a conjunctive normal form 3CNF with a set of variables V =
{v1, . . . , vx} and a set of clauses C = {c1, . . . , cy}. Each clause is a disjunction of at most
three literals `(vi) ∨ `(vj) ∨ `(vk), where `(vi) ∈ {vi, vi}. We can represent F by a graph
H(F ) = (B ∪ V,A1 ∪ A2) which we build as follows: We start with a bipartite graph
with the node set N consisting of all clauses and all variables and an edge set A1 which
contains an edge between each clause c and variable v if and only if v or v is contained in
c, A1 = {{ci, vj} | vj ∈ ci or vj ∈ ci}. To this graph we add a cycle A2 consisting of edges
between all pairs of consecutive variables, A2 = {{vj , vj+1} | 1 ≤ j < x} ∪ {vx, v1} . We call
F planar if there is a plane embedding of H(F ) which at each variable node has all paths
representing positive literals on one side of the cycle A2 and all paths representing negative
literals on the other side of A2. The decision problem Planar3SAT of finding whether a
given planar 3CNF F is satisfiable or not is NP-complete, a result due to Lichtenstein [20].
We assume without loss of generality that every clause contains at most one literal per
variable. For an example of such an embedding, see Figure 3 (left).

Building the Delivery Graph. We first describe how to turn a plane embedding of a planar
3CNF graph H(F ) into a delivery graph G(F ), see Figure 3. Only later we will define edge
weights, the agents’ starting positions and their energy budgets. We will focus on Returning
BudgetedDelivery; the only difference for non-returning agents lie in their budgets, we
provide adapted values for non-returning agents in footnotes.

We transform the graph in four sequential steps: First we dissolve the edge {vx, v1} and
replace it by an edge {vx, vx+1}. Secondly, denote by degH(F ),A1(v) the total number of
positive literal edges and negative literal edges adjacent to v. Then we can “disconnect” and
“reconnect” each variable node vi (1 ≤ i ≤ n) from all of its adjacent clause nodes as follows:
We delete all edges {{vi, c}} ⊆ A1 and split {vi, vi+1} into two paths pi,true and pi,false, on
which we place a total of degA1(v) internal literal nodes li,c: If vi is contained in a clause c –
and thus we previously deleted {vi, c} – we place li,c on pi,false and “reconnect” the variable
by adding an edge between li,c and the clause node c. Else if v is contained in c we proceed
similarly (putting the node li,c on pi,true instead). As a third step, depending on the number
of literals of each clause c, we may modify its node: If c contains only a single literal, we
delete the c node. If c contains two literals `(vi), `(vj), we rename the node to ci,j . If c is a
disjunction of three literals `(vi), `(vj), `(vk), we split it into two nodes ci,j (connected to
li,c, lj,c) and cj,k (connected to lj,c, lk,c). Finally, we place the message on the first variable
node s := v1 and set its destination to t := vx+1.

We remark that all four steps can be implemented such that the resulting delivery graph
G(F ) is still planar, as illustrated in Figure 3 (in each path tuple (pi,true, pi,false) the order
of the internal nodes follows the original circular order of adjacent edges of vi, and for each
clause c = `(vi) ∨ `(vj) ∨ `(vk) the nodes ci,j and cj,k are placed close to each other).

SIROCCO’16



8 Collaborative Delivery with Energy-Constrained Mobile Robots

Reduction Idea. We show that the message can’t be delivered via any of the clause nodes.
Thus the message has to be routed in each path pair (pi,true, pi,false) through exactly one
of the two paths. If the message is routed via the path pi,true, we interpret this as setting
vi = true and hence we can read from the message trajectory a satisfiable assignment for F .

Agent Placement and Budgets. We will use greek letters for weights (namely ζ and δ)
when the weights depend on each other or on the input. We place three kinds of agents on G:
1. Variable agents: x agents which are assigned to the variable nodes v1, . . . , vx. These

agents will have to decide whether the message is delivered via pi,true or via pi,false, thus
setting the corresponding variable to true or to false. We give all of them a budget of 2ζ.1

2. Clause agents: One agent per created clause node, e.g. a clause c containing three literals
gets two agents, one in each of the two clause nodes. We think of these agents as follows:
If in c = `(vi) ∨ `(vj) ∨ `(vk) the literal `(vj) is false, then clause c needs to send one of
its agents down to the corresponding path node lj,c to help transporting the message over
the adjacent “gap” of size ζ (depicted blue in Figures 3 (right), 4). A 3CNF F will be
satisfiable, if and only if no clause needs to spend more agents than are actually assigned
to it respectively its node(s) in G(F ). We give all clause agents a budget of 2 · (1 + ζ).2

3. Separating agents: These will be placed in-between the agents defined above, to ensure
that the variable and clause agents actually need to solve the task intended for them
(they should not be able to deviate and help out somewhere else – not even their own
kind). The separating agents will be placed in pairs inside δ-tubes, which we define below.

I Remark. Strictly speaking, a reduction without variable agents works as well. In terms of
clarity, we like to think of variable agents as the ones setting the variables to true or false.

δ-Tubes. We call a line segment a δ-tube if it satisfies the following four properties: (i) It
has a length of δ. (ii) It contains exactly two agents which both have budget at most δ. (iii)
Neither agent has enough energy to leave the line segment on the left or on the right by
more than a distance of δ3 . (iv) The agents can collectively transport a message through the
line segment from left to right.
δ-tubes exist for both BudgetedDelivery versions, examples are given in Figure 4 (left).
The reader may think of these examples, whenever we talk about δ-tubes.

Edge Weights. We define edge weights on our graph G(F ) as follows: All edges between
clause nodes and internal path nodes get weight 1 (in particular this means that if a clause
agent walks to the path, it has a remaining range of ζ). Each path consists of alternating
pieces of length ζ and of δ-tubes. We choose δ := 4ζ

3 > ζ. This means that neither
variable nor clause agents can cross a δ-tube (because their budget is not sufficiently large).
Furthermore the distance any separating agent can move outside of its residential tube is at
most δ

3 = 4ζ
9 < ζ

2 . In particular separating agents are not able to collectively transport the
message over a ζ-segment, since from both sides they are not able to reach the middle of the
segment to handover the message. At last we set ζ := 1

8 .

I Lemma 4 (Returning BudgetedDelivery). A planar 3CNF F is satisfiable if and only if it
is possible to deliver a message from s to t in the corresponding delivery graph G(F ), such
that all agents are still able to return to their starting points in the end.

1 In the Non-Returning version we want agents to have the same “range”, hence we set their budget to ζ.
2 In the Non-Returning version we assign a budget of (1 + ζ) to clause agents.
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Figure 4 (left) Two examples of δ-tubes for both versions of BudgetedDelivery.
(right) Agent placement and edge weights on G(F ); agents are depicted by squares.

Proof (Sketch). “⇒” The schedule is straightforward: Each variable agent chooses, accord-
ing to the assignment to vi, the true-path pi,true or the false-path pi,false. Separating agents
and clause agents help wherever they are needed.

“⇐” One can show that the message cannot be delivered via any clause node. Hence we
set vi = true if and only if the message moves through pi,true. Now, each clause must have
one satisfied literal, otherwise its agents could not have helped to bridge all ζ-segments. J

The same arguments work for Non-Returning BudgetedDelivery as well. Recall that
a delivery graph G(F ) created from a planar 3CNF F is planar. Furthermore the size of
G(F ), as well as the number of agents we use, is polynomial in the number of clauses and
variables. The agents’ budgets and the edge weights are polynomial in ζ, δ and thus constant.
Thus Lemma 4 shows NP-hardness of BudgetedDelivery on planar graphs. Finally, note
that hardness also holds for a uniform budget B: One can simply add an edge of length
(B −Bi)/2 to the starting location of each agent i and relocate i to the end of this edge.3

I Theorem 5 (Hardness of BudgetedDelivery). Both versions of BudgetedDelivery are
strongly NP-hard on planar graphs, even for uniform budgets.

5 Hardness of Resource Augmentation

Main Ideas. We show that for all ε > 0, there is no polynomial-time (2 − ε)-resource-
augmented algorithm for Returning BudgetedDelivery, unless P = NP. The same holds
for (3− ε)-resource-augmentation for the Non-Returning version. Intuitively, an algorithm
which finds out how to deliver the message with resource-augmented agents will at the same
time solve 3SAT. We start by taking the reduction from Planar3SAT from Section 4.
However, in addition to the previous delivery graph construction G(F ), we need to replace
the δ-tubes and ζ-segments in order to take care of three potential pitfalls. We illustrate the
modification into the new graph G′(F ) in Figure 6:
1. In a resource-augmented setting, δ-tubes are no longer able to separate the clause and

variable agents: These agents might be able to cross the δ-tube, or the separating agents
residing inside the δ-tube can help out in the ζ-segments (there is no value for δ to prevent
both). We will tackle this issue below by replacing δ-tubes by a chain of logarithmically
many tubes with exponentially increasing and decreasing δ-values.

2. In the reduction for the original decision version of BudgetedDelivery, a clause c with
three literals gave rise to two clause nodes ci,j , cj,k that were adjacent to the same path

3 We relocate a non-returning agent by adding an edge of length (B −Bi).

SIROCCO’16
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δ-tubes 2δ-tubes 2blog
L
δ c · δ – tubes δ-tubes

︸ ︷︷ ︸
6×

︸ ︷︷ ︸
6×

︸ ︷︷ ︸
6×

︸ ︷︷ ︸
6×

Figure 5 L-δ-chains consist of blocks of 6 tubes of exponentially increasing and decreasing size.

node lj,c. Hence the agent on ci,j , now with resource-augmented budget, could pick up
the message at lj,c and bring it close to the second resource-augmented agent stationed
at cj,k. This agent then might transport the message via its own clause node to the
distant literal node lk,c. To avoid this, we replace every ζ-segment adjacent to such a
“doubly” reachable path node lj,c by two small parallel arcs. Both arcs contain exactly
one ζ-segment, reachable from only one clause node (the message can then go over either
arc), as well as a chain of tubes to provide the necessary separation.

3. A single clause agent stationed at ci,j might retrieve the message from the first literal
node li,c, walk back to its origin and then on to the second literal lj,c, thus transporting
the message over a clause node. This can always be done by 2-resource-augmented agents;
however for (2− ε)-resource-augmentation we can prevent this by carefully tuning the
weights of the ζ-segments, e.g. such that (2− ε) · (1 + ζ)� 2.4

We now give a more formal description of the ideas mentioned above. Recall that a δ-tube
had length δ and contained two agents with budget at most δ each. If these agents are now
γ-resource-augmented, γ < 3, they can move strictly less than 3δ to the right or to the left
of the δ-tube. In the following we want to uncouple the length of the line segment from the
range the agents have left to move on the outside of the line segment.

L-δ-Chains. We call a line segment an L-δ-chain if it satisfies the following three properties:
(i) Its length is at least L (a constant). (ii) No γ-resource-augmented agent (1 ≤ γ < 3)
contained in the chain has enough energy to leave the line segment by 3δ or more. (iii) The
agents contained in the chain can collectively transport a message through the line segment
from left to right (already with their original budget).
We can create L-δ-chains for both BudgetedDelivery versions simply by using the
respective δ-tubes as a blackbox: We start our line segment by adding a block of six δ-tubes
next to each other, followed by a block of six 2δ-tubes, a block of six 4δ-tubes and so on
until we get a block of length at least 6 · 2blogL/δc · δ > L. The same way we continue to add
blocks of six tubes with lengths decreasing by powers of 2, see Figure 5. Obviously properties
(i) and (iii) are satisfied. To see (ii), note that any agent contained in the first or last block
of δ-tubes cannot leave its tube (and thus the L-δ-chain) by 3δ or more. On the other hand,
none of the inner blocks’ agents is able to even cross the preceeding or the following block of
six tubes, since their total length is larger than its budget.

Arc Replacement of ζ-Segments. Next we decouple any pair of clause agents (stationed
at nodes ci,j , cj,k) that can directly go to the same literal node lj,c (so as not to allow them
to transport the message via clause node with their augmented budgets, depicted in red
in Figure 6 (left)). We replace the adjacent ζ-segment by two small arcs which represent
alternative ways over which the message can be transported. Each arc consists of one
L-δ-chain and of one ζ-segment, see Figure 6.

4 Non-returning clause agents can do this if they are 3-resource-augmented; and we can prevent it for
(3 − ε)-resource-augmentation by setting ζ such that (3 − ε) · (1 + ζ) � 3 (in fact the value of ζ will be
the same as for Returning BudgetedDelivery, but we will use different bounds in the proof).
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Figure 6 (top-to-bottom) We replace δ-tubes in G(F ) by L-δ-chains in G′(F ).
(left-to-right) We replace each ζ-segment connected to two clause agents by two parallel arcs.

The inner arc begins with the ζ-segment – whose beginning lij,c can be reached through an
edge of length 1 by the first clause agent (stationed at ci,j) – and ends with the L-δ-chain.
The outer arc first has the L-δ-chain and then the ζ-segment. The node in between these
two parts, denoted by lkj,c, is connected via an edge of length 1 to the second clause agent’s
starting position cj,k.
We conclude the replacement with three remarks: Firstly, it is easy to see that the described
operation respects the planarity of the graph. Secondly, we are able to give values for L
and δ in the next subparagraph such that a single clause agent is still both necessary and
(together with agents inside the newly created adjacent L-δ-chain) sufficient to transport a
message over one of the parallel arcs from left to right. Finally, the clause agent starting at
ci,j is no longer able to meet the clause agent starting at cj,k.

Budgets and Edge Weights. Recall that our agents have the following budgets: separating
agents have a budget according to their position in the L-δ-chain, variable agents a budget
of 2ζ and clause agents a budget of 2(1 + ζ).5 Now these budgets are γ-resource-augmented,
with γ < 3. We would like to prevent clause and variable agents from crossing L-δ-chains or
even meeting inside of them, hence we set L := 9, which shall exceed the augmented budget of
every agent by a factor of more than 2. Furthermore we don’t want separating agents to help
out too much outside of their residential chain, hence we set δ := ζ

9 . A resource-augmented
separating agent can thus walk only as far as 3δ = ζ

3 to the outside of the tube. In particular,
separating agents cannot transport the message over a ζ-segment.

Next we choose ζ such that an augmented clause agent stationed at a clause node ci,j is not
able to transport the message from li,c to lj,c, not even in collaboration with the separating
agents that can reach the two literal nodes. We set ζ := ε

6−ε . The edges {ci,j , li,c} , {ci,j , lj,c}
have length 1. In each edge, separating agents can help by at most 3δ = ζ

3 , leaving at least
a distance of 1 − ζ

3 for the clause agent to cover. First note that for 0 < ε < 1, we have
ζ = ε

6−ε <
ε
5 <

2ε
3 and (6− ε) > 3(2− ε). Hence a γ-resource-augmented clause agent has a

budget of only γ ·2(1+ζ) = 2(2−ε)(1+ζ) = 2(2−ε+ (2−ε)ε
6−ε ) < 2(2− 2ε

3 ) < 2(2−ζ) < 4·(1− ζ
3 ),

and thus cannot transport the message via its clause node and return home in the end.6

I Lemma 6 (Resource-augmented Returning BudgetedDelivery). A planar 3CNF F is satis-
fiable if and only if it is possible to deliver a message with (2− ε)-resource-augmented agents
from s to t in the corresponding delivery graph G′(F ), such that the agents are still able to
reach their starting point in the end.

5 In the Non-Returning version, variable agents have a budget of ζ and clause agents a budget of 1 + ζ.
6 For non-returning agents we use (for ε < 2) the inequalities: ζ = ε

6−ε <
ε
4 <

ε
2 and (6 − ε) > 2(3 − ε).

Hence a non-returning γ-resource-augmented clause agent has a budget of γ(1 + ζ) = (3 − ε)(1 + ζ) =
3 − ε+ (3−ε)ε

6−ε < 3 − ε
2 < 3 − ζ = 3 · (1 − ζ

3 ), and thus cannot transport the message via its clause node.

SIROCCO’16
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Proof (Sketch). We follow the ideas of the proof of Lemma 4, and use the modifications to
the graph structure and the weights presented in this section. J

The same arguments work for Non-Returning BudgetedDelivery as well, if we replace
the inequalities for returning (2 − ε)-resource-augmented agents with the corresponding
inequalities for non-returning (3− ε)-resource-augmented agents, given in Footnote 6.
Compare the new delivery graph G′(F ) with the original graph G(F ). The only topological
changes we introduced with our replacements were the parallel arcs replacing the ζ-segments
reachable by two clause nodes. We have already seen that this change respected the planarity
of the delivery graph. Relevant changes to the edge weights and agent numbers, on the other
hand, were added by replacing δ-tubes with L-δ-chains: Each chain consists of blocks of six
δ-tubes of exponentially increasing size, hence we need a logarithmic number of tubes per
chain, namely O

(
log L

δ

)
many. We have fixed the values of L and δ to L = 9 and δ = ζ

9 .
With ζ−1 = 9

ε − 1 ∈ Θ(ε−1) we get O
(
log L

δ

)
= O(log(ζ−1)) = O(log(ε−1)) many agents per

chain. The number of chains is clearly polynomially bounded by the number of variables and
clauses and the edge weights depend on ε only as well. Hence we conclude:

I Theorem 7 (Inexistence of a better resource augmentation for BudgetedDelivery). There is no
polynomial-time (2− ε)-resource-augmented algorithm for Returning BudgetedDelivery
and no (3−ε)-resource-augmented algorithm for Non-Returning BudgetedDelivery, unless
P = NP.

6 Conclusions

We gave a polynomial time algorithm for the returning variant of the problem on trees, as
well as a best-possible resource-augmented algorithm for general graphs. On the other hand,
we have shown that BudgetedDelivery is NP-hard, even on planar graphs and even if we
allow resource augmentation. Our bounds on the required resource augmentation are tight
and complement the previously known algorithm [8] for the non-returning case.

Our results show that BudgetedDelivery becomes hard when transitioning from trees
to planar graphs. It is natural to investigate other causes for hardness. Chalopin et al. [8]
gave a polynomial algorithm for the Non-Returning version under the assumptions that (i)
the order in which the agents move is fixed and (ii) the message can only be handed over at
vertices. Using a dynamic program, we are able to drop assumption (ii), allowing handovers
within edges. Our result holds for both versions of BudgetedDelivery.

I Theorem 8. BudgetedDelivery is solvable in time O(k(n + m)(n logn + m)) if the
agents are restricted to a fixed order in which they move.

I Corollary 9. For a constant number of agents k, BudgetedDelivery is solvable in time
poly(n,m) by brute forcing the order of the agents.

An interesting open problem is to understand collaborative delivery of multiple messages
at once. For example, the complexity of the problem on paths remains open. In this setting,
it may be resonable to constrain the number of agents, the number of messages, or the ability
of transporting multiple messages at once, in order to allow for efficient algorithms. Also, in
general graphs, the problem may not become easy if the order in which agents move is fixed.
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Appendix

A Proof of Theorem 3

I Theorem 3. There is a polynomial-time
(
1 + k−2

k max Bj
Bi

)
-resource-augmented algorithm

for Returning BudgetedDelivery.

Proof. We first “guess” the first agent a and the last agent b of the feasible schedule (by trying
all

(
k
2
)
pairs). In contrast to Theorem 2, we can in this way get a 2-resource-augmented

solution in which a and b only need their original budgets. Intuitively, we can evenly
redistribute the remaining part of B̂a and B̂b among all k agents, such that for each agent
i we have B̂i ≤ Bi + k−2

k maxBj . Without loss of generality, we assume that agent a
walks from its starting position on a shortest path to s to pick up the message, and that
agent b walks home directly after dropping the message at t. Hence consider the ellipsoids
Ba := E(pa, s, Ba) and Bb := E(pb, s, Bb) as well as the balls Bi := B(pi, Bi2 ) around the
starting positions of all other agents and compute their intersection graph GI .

We denote by i = 1, . . . , ` the agents on a shortest path from Ba to Bb in GI (if any),
where a = 1, b = ` ≤ k and specify the following points: h0 = s, hi ∈ Bi ∩ Bi+1, and h` = t.
If the agents handover the message at the locations hi, we get a 2-resource-augmentation
where the agents 1 and ` use only their original budget. Instead we let them help their
neighbours 2 and `− 1 by `−2

` B2 and `−2
` B`−1, respectively. Those agents further propagate

the surplus towards the agent(s) in the middle, see Figure 2 (right).

s

p1 p7

t

p1 p7
p2

p3

p4

p5

p6

h3

h1

s = h0 t = h7

Figure 7 (left) Feasible schedule. (right) Schedule with
(
1 + 5

7 max Bj
Bi

)
-resource-augmentation.

Specifically, we let the agents move as follows:
Agent 1 goes to h0 to pick up the message and then goes on to h1. Then he moves

towards p2 along the shortest path from h1 to p2 by a `−2
ell -fraction of d(h1, p2), drops off the

message and returns home. The budget needed to do so is at most d(p1, h0) + d(h0, h1) +
2 `−2

` d(h1, p2) + d(h1, p1) ≤ B1 + `−2
` B2. Agents i = 2, . . . , b `2c get help from their preceding

agent and thus can help the following agent: Agent i walks from its starting position pi
by a 2(i−1)

` -fraction towards hi−1 to pick up the message and then returns home. Then i
goes on to the point hi and from there on by a `−2i

` -fraction towards pi+1 to drop off the
message. Finally, agent i returns home to pi. Since hi−1, hi ∈ Bi and hi ∈ Bi+1, the budget
needed by agent i to do so is at most 2 2(i−1)

` d(pi, hi−1) + 2d(pi, hi) + 2 `−2i
` d(hi, pi+1) ≤

2(i−1)
` Bi+Bi+ `−2i

` Bi+1 ≤ Bi+ `−2
` max {Bi, Bi+1}. Agents i = d `+2

2 e, . . . , ` help in the same
way their preceding agent, hence they need a budget of at most Bi + `−2

` max {Bi−1, Bi}.
If ` is odd there is an additional middle agent i = `+1

2 who needs a budget of at most
2 `−1

` d(pi, hi−1) + 2 `−1
` d(pi, hi+1) ≤ 1 + `−2

` Bi.
Hence we achieve a resource augmentation of 1 + `−2

` max Bj
Bi
≤ 1 + k−2

k max Bj
Bi

. J
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Figure 8 (left) Two examples of δ-tubes for both versions of BudgetedDelivery.
(right) Agent placement and edge weights on G(F ); agents are depicted by squares.

I Proposition 1. If a planar 3CNF F is satisfiable, then in the corresponding delivery graph
G(F ), the agents can collectively deliver the message from s to t and return to their respective
starting positions.

Proof. Assume that there is a satisfiable assignment for F . Then the agents’ actions are
straightforward: Each variable agent placed on vi moves according to the variable assignment
to vi by a ζ-distance into either the true-path pi,true or the false-path pi,false. For the
message to be delivered to the next variable agent, it needs to be handed across δ-tubes and
ζ-segments. The former can always be done by the respective separating agents residing
inside the δ-tube. It remains to be shown that the latter can be done by clause agents. To
this end, consider a clause c which consists of |c| literals.

If |c| = 1 respectively c = `(vj) for some j, then there is no clause node in G(F ) at all
(see the top right clause in Figure 8). No agent can reach the ζ-segment adjacent to lj,c, but
this does not cause a problem, since by our assumption the literal `(vj) is satisfied and thus
the variable agent at vj chose to deliver the message via the opposite path pj,`(vj).

If |c| = 2, then there is one clause agent on a single clause node ci,j which is connected to
the internal path nodes li,c and lj,c (see the top left clause in Figure 8). Both have adjacent
ζ-segments which correspond to the literals `(vi), `(vj). By assumption, at least one literal
– without loss of generality `(vj) – is satisfied, and since the variable agent choosing the
assignment for vj thus takes the “opposite” path pj,`(vj), the ζ-segment corresponding to
`(vj) does not need to be crossed while delivering the message. If the other literal is not
satisfied, then the clause agent is needed at the corresponding ζ-segment, otherwise it can
stay at its place of origin.

If |c| = 3, we have three literals/ζ-segments and we have two clause nodes with one agent
each (see the top center clause in Figure 8). One is connected to the first and the second
ζ-segment, the other to the second and third. Collectively the two agents can reach every
possible pair of segments out of the three ζ-segments. At least one literal `(vj) is satisfied.
To each of the remaining ζ-segments we can therefore send one agent. Moving to the path
needs 1 unit of energy (and so does returning to the clause node). Hence the agent can cover
a remaining distance of ζ, which is sufficient to transport the message to the next δ-tube. J
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I Proposition 2. It is not possible to deliver a message from s to t via any clause node of the
delivery graph G(F ).

Proof. For the sake of contradiction assume that the message is transported via a clause
node ci,j which connects to the internal path nodes li,c and lj,c. Except for the clause agent
stationed at ci,j , no other agent can move further than ζ = 1

8 into each of the two edges
{li,c, ci,j} and {lj,c, ci,j}. Hence the clause agent stationed at ci,j needs to cover in each
edge a distance of 2(1− ζ) (to go back and forth), hence for both edges it needs an energy of
at least 2 · 2(1− ζ) = 4 · 7

8 = 7
2 . However, the agent has a budget of only 2(1 + ζ) = 2 · 9

8 <
7
2 ,

yielding a contradiction to the message being transported over the clause node.7 J

I Proposition 3. To deliver the message over a ζ-segment adjacent to a variable node vi, we
need the variable agent with starting position vi. To deliver the message over a ζ-segment
adjacent to a literal node lj,c, we need a clause agent with starting position ci,j or cj,k.

Proof. Recall that δ = 4ζ
3 . Separating agents inside δ-tubes can neither single-handedly nor

collectively (starting from both sides) transport the message over a ζ-segment, since they
can move outside of their residential tube by at most δ

3 <
ζ
2 . Furthermore variable agents

and clause agents can move on a true- or false-path inside an interval of size at most ζ < δ,
hence they can’t cross a δ-tube. Thus to transport the message over a ζ-segment adjacent to
a variable node vj , we need the variable agent placed on vj . On the other hand, transporting
the message over a ζ-segment adjacent to the internal path node lj,c needs a clause agent of
clause c. If c has two clause nodes ci,j , cj,k, either of the two clause agents will do. J

I Lemma 4 (Returning BudgetedDelivery). A planar 3CNF F is satisfiable if and only if it
is possible to deliver a message from s to t in the corresponding delivery graph G(F ), such
that all agents are still able to return to their starting points in the end.

Proof. “⇒” This direction has been shown in Proposition 1.
“⇐” Assume that the message can be delivered from s to t. From Proposition 2 it follows

that the message has to be transported through the true- and false-paths. Without loss of
generality, the message must move monotonously through the paths pi,true or pi,false. By
Proposition 3 we know that for each ζ-segment that the message is delivered over, we need
either the corresponding variable agent or the corresponding clause agent. It remains to
show that we have enough clause agents for the task:

Each clause with |c| literals “owns” only |c| − 1 clause agents and thus must have at least
one satisfied literal (otherwise the |c| − 1 clause agents would not be sufficient to help in
all corresponding ζ-segments). Hence we can read a satisfiable variable assignment for the
Planar3SAT instance directly from the choice of the variable agents (which each pick the
adjacent true- or the adjacent false-path). J

It is easy to see that the same arguments work for Non-Returning BudgetedDelivery as
well, hence we immediately get the same statement for the NonReturning version.

I Corollary 10 (Non-Returning BudgetedDelivery). A planar 3CNF F is satisfiable if and
only if it is possible to deliver a message in the corresponding delivery graph.

7 Non-returning agents need to cover only one of the edges twice (to go back and forth), hence they need
an energy of at least 3(1 − ζ) = 21

8 versus a budget of 1 + ζ = 9
8 , yielding a contradiction as well.
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C Hardness of Resource Augmentation
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Figure 9 (top-to-bottom) We replace δ-tubes in G(F ) by L-δ-chains in G′(F ).
(left-to-right) We replace each ζ-segment connected to two clause agents by two parallel arcs.

I Proposition 4. If a planar 3CNF F is satisfiable, then in the corresponding delivery graph
G′(F ), the agents can collectively deliver the message from s to t and return to their respective
starting positions.

Proof. In Proposition 1 we have seen how the message can be transported in the original
delivery graph G(F ). In the modified delivery graph G′(F ), variable agents and clause agents
do exactly the same as their counterparts in G(F ), and separating agents help wherever
needed. J

I Proposition 5. It is not possible for (2−ε)-resource-augmented agents to deliver the message
from s to t via any clause node of the delivery graph G′(F ).

Proof. This has been shown in the main paper, we repeat the arguments here for the reader’s
convenience: We show that an augmented clause agent stationed at a clause node ci,j is not
able to transport the message from li,c to lj,c, not even in collaboration with the separating
agents that can reach the two literal nodes. The edges {ci,j , li,c} , {ci,j , lj,c} have length 1.
In each edge, separating agents can help by at most 3δ = ζ

3 , leaving at least a distance of
1− ζ

3 for the clause agent to cover. First note that for 0 < ε < 1, we have ζ = ε
6−ε <

ε
5 <

2ε
3

and (6 − ε) > 3(2 − ε). Hence a γ-resource-augmented clause agent has a budget of only
γ · 2(1 + ζ) = 2(2− ε)(1 + ζ) = 2(2− ε+ (2−ε)ε

6−ε ) < 2(2− 2ε
3 ) < 2(2− ζ) < 4 · (1− ζ

3 ), and
thus cannot transport the message via its clause node and return home in the end.8 J

I Proposition 6. Assume that there is a schedule in which γ-resource-augmented agents
(γ < 3) collectively deliver the message from s to t in the delivery graph G′(F ). Then in each
ζ-segment that the message is delivered over, the schedule uses the corresponding variable
agent or the corresponding clause agent. Furthermore the schedule can be transformed into
a feasible schedule with the original budgets.

Proof. By Proposition 5 we know that the message cannot be transported over any of the
clause nodes. Recall that γ-resource-augmented separating agents inside δ-tubes can neither
single-handedly nor collectively (starting from both sides) transport the message over a
ζ-segment, since they can move outside of their residential L-δ-chain by at most 3δ = ζ

3 .
Furthermore, clause agents and variable agents are not able to meet each other anywhere

8 For non-returning agents we use (for ε < 2) the inequalities: ζ = ε
6−ε <

ε
4 <

ε
2 and (6 − ε) > 2(3 − ε).

Hence a non-returning γ-resource-augmented clause agent has a budget of γ(1 + ζ) = (3 − ε)(1 + ζ) =
3 − ε+ (3−ε)ε

6−ε < 3 − ε
2 < 3 − ζ = 3 · (1 − ζ

3 ), and thus cannot transport the message via its clause node.
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in the graph, since they are pairwise separated by at least one L-δ-chain and do not have
enough energy (even with the resource-augmented budgets) to reach the middle point of one
of these chains.

In conclusion, we know that the message needs to be transported along the true- and
false-paths and without loss of generality we assume that this happens in a strictly monotone
movement. Now in each ζ-segment the message is transported across in the schedule with
(2−ε)-resource-augmented budget, a variable agent or a clause agent is necessary. Since these
agents cannot meet each other, such an agent must pick up the message from a separating
agent of the preceeding L-δ-chain and hand it over to a separating agent of the following
L-δ-chain. Even with a non-augmented budget, said agent would be able to pick up and
hand over the message at the end and the start of these chains. Additionally, separating
agents are able to transport the message from left to right across their L-δ-chain without a
resource augmentation of their budgets. Together this yields a solution for delivery on G′(F )
without any resource-augmented budgets. J

I Lemma 6 (Resource-augmented Returning BudgetedDelivery). A planar 3CNF F is satis-
fiable if and only if it is possible to deliver a message with (2− ε)-resource-augmented agents
from s to t in the corresponding delivery graph G′(F ), such that the agents are still able to
reach their starting point in the end.

Proof. “⇒” This direction has been shown in Proposition 4.
“⇐” Assume that the message can be delivered from s to t. From Proposition 5 it follows

that the message has to be transported through the true- and false-paths. By Proposition 6 we
know that the schedule thus can be transformed into a schedule of agents with non-augmented
budgets, where in each ζ-segment that the message is delivered over, the corresponding
variable agent or the corresponding clause agent is used.

We show that there is a bijective mapping into a feasible schedule in the original graph
G(F ), which by Lemma 4 gives us a satisfiable assignment for F . Consider the movement of
the individual agents:

First of all, we let every variable agent in G(F ) do the same work as its counterpart
in G′(F ) and vice versa. Now consider the separating agents of any δ-tube in G(F ) which
corresponds to a L-δ-chain in G′(G). We let these agents collectively transport the message
from left to right over their δ-tube in G(F ) if and only if the agents in the corresponding
chain in G′(F ) transport the message over their L-δ-chain. Finally, we let corresponding
clause agents in both graphs go to the same ζ-segment (both to their first segment, both
to their second segment, or both to neither). Hence agents in G(F ) can just “copy” the
movements of their respective counterparts in G′(F ). J

It is easy to see that the same arguments work for Non-Returning BudgetedDelivery as
well: In the proof, we simply replace the use of Lemma 4 by referring to Corollary 10 and
replace the estimations in the proof of Proposition 5 with the corresponding estimations for
Non-Returning (3− ε)-resource-augmented agents, given in Footnote 8.

I Corollary 11 (Resource-augmented Non-Returning BudgetedDelivery). A planar 3CNF F is
satisfiable if and only if it is possible to deliver a message with (3− ε)-resource-augmented
agents from s to t in the corresponding delivery graph G′(F ).
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D Proof of Theorem 8

I Theorem 8. BudgetedDelivery is solvable in time O(k(n + m)(n logn + m)) if the
agents are restricted to a fixed order in which they move.

Proof. If there is a feasible schedule, we can compute it in a breadth-first search-like fashion
where we proceed agent by agent and update reachable regions of the graph on-the-fly: Each
agent can either not help in the schedule or it can transport the message from a pickup
location to a drop-off location. We show that we can restrict drop-offs to meaningful places
such that for each agent the set of all possible pickup locations is bounded by n+m. This
limitation to only one of the potentially infinitely many handover points inside each edge
allows us to use dynamic programming and to proceed by induction:

Denote the agents in the schedule order by a1, . . . , a`. The first agent a1 can pick up the
message at s only, hence there is only one possible pick-up location. If a1 wants to drop off
the message at a vertex, there are at most n choices of where to do so. We mark all the
vertices which a1 can reach from s while still being able to return home. Now assume a1
wants to drop off the message inside an edge e = {u, v}. This means that e can be reached
by a1, hence without loss of generality the vertex u is marked. If v is marked as well, then
a1 should not drop the message inside e, since the message has to be picked up later, which
could just as well be done at either u or v. Otherwise a1 should bring the message as far as
possible into the edge (since if a later agent ai wants to pick up the message, it can pick it
up at u or come in via v). We mark this point inside the edge and store its distance from u.
We now restrict ourselves to these at most n+m described drop-off locations.

An agent ai, i > 1 can pick up the message at s or at any previous drop-off location. By
induction there are at most n+m many such locations. Now we first check whether ai can
pick up the message somewhere and deliver it to any not yet marked vertex. If so, we mark
this vertex (and the number of marked vertices stays at most n). Next we check whether
ai can bring the message into an edge e = {u, v} for which (without loss of generality) u is
marked and v is not. Check whether the point inside the edge which is furthest from u –
and still can be reached by ai – has larger distance to u than a previously marked point. If
so, delete the old point (if any) and mark the new point and store its distance from u. The
number of marked edges stays at most m.

If at some point we mark the vertex t, we are done. Since each agent i has at most n+m

pick-up locations to consider, we can compute all new marks by computing the ellipsoid
E(pi, l, Bi) for every old mark l, which we can do by running Dijkstra’s shortest path algorithm
once from pi and once from each old mark. Hence we require time O((n+m) · (n logn+m))
per agent. J
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