
Asynchronous Broadcasting with Bivalent Beeps

Kokouvi Hounkanli and Andrzej Pelc?

Département d’informatique, Université du Québec en Outaouais,
Gatineau, Québec J8X 3X7, Canada. E-mails: houk06@uqo.ca, pelc@uqo.ca.

Abstract. In broadcasting, one node of a network has a message that
must be learned by all other nodes. We study deterministic algorithms for
this fundamental communication task in a very weak model of wireless
communication. The only signals sent by nodes are beeps. Moreover, they
are delivered to neighbors of the beeping node in an asynchronous way:
the time between sending and reception is finite but unpredictable. We
first observe that under this scenario, no communication is possible, if
beeps are all of the same strength. Hence we study broadcasting in the
bivalent beeping model, where every beep can be either soft or loud. At
the receiving end, if exactly one soft beep is received by a node in a
round, it is heard as soft. Any other combination of beeps received in a
round is heard as a loud beep. The cost of a broadcasting algorithm is
the total number of beeps sent by all nodes.

We consider four levels of knowledge that nodes may have about the
network: anonymity (no knowledge whatsoever), ad-hoc (all nodes have
distinct labels and every node knows only its own label), neighborhood
awareness (every node knows its label and labels of all neighbors), and
full knowledge (every node knows the entire labeled map of the network
and the identity of the source). We first show that in the anonymous
case, broadcasting is impossible even for very simple networks. For each
of the other three knowledge levels we provide upper and lower bounds
on the minimum cost of a broadcasting algorithm. Our results show
separations between all these scenarios. Perhaps surprisingly, the jump
in broadcasting cost between the ad-hoc and neighborhood awareness
levels is much larger than between the neighborhood awareness and full
knowledge levels, although in the two former levels knowledge of nodes
is local, and in the latter it is global.

Keywords: algorithm, asynchronous, broadcasting, deterministic, graph,
network, beep.

? Supported in part by NSERC discovery grant 8136 – 2013 and by the Research Chair
in Distributed Computing of the Université du Québec en Outaouais.

1 Introduction

The background and the problem. Broadcasting is a fundamental communi-
cation task in networks. One node of a network, called the source, has a message
that must be learned by all other nodes. We study deterministic algorithms for
this well-researched task in a very weak model of wireless communication. The
only signals sent by nodes are beeps. Moreover, they are delivered to neighbors
of the beeping node in an asynchronous way: the time between sending and re-
ception is finite but unpredictable. Our aim is to study how the combination of
two weaknesses of the communication model, very simple and short messages
on the one hand, and the asynchronous way of delivery on the other hand,
influences efficiency of communication. Each of these two model weaknesses sep-
arately has been studied before. Synchronous broadcasting and gossiping with
beeps was studied in [7]. Asynchronous broadcasting in the radio model, where
large messages can be sent in a round, was investigated in [3, 4, 21]. To the best
of our knowledge, the combination of the two model weaknesses, i.e., very short
messages and asynchronous delivery, has never been studied before.

We first observe that under this very harsh scenario, no communication is
possible, if beeps are all of the same strength (see Section 2). Hence we study
broadcasting in the asynchronous bivalent beeping model, where every beep can
be either soft or loud, as this is, arguably, the weakest model under which asyn-
chronous wireless broadcasting can be performed. At the receiving end, if exactly
one soft beep is received by a node in a round, it is heard as soft. Any other
combination of beeps received in a round is heard as a loud beep. The cost of
a broadcasting algorithm is the total number of beeps sent by all nodes. This
measures (the order of magnitude of) the energy consumption by the network, as
the energy used to send a loud beep can be considered to be a constant multiple
of that used to send a soft beep.

The model. Communication proceeds in rounds. In each round, a node can
either listen, i.e., stay silent, or send a soft beep, or send a loud beep. For any
beep sent by any node, an omniscient asynchronous adversary chooses a non-
negative integer t, and delivers it to all neighbors of the sending node t rounds
later. The delivery delay at all neighbors is the same for a given beep, but may
be different for different beeps of the same node and for beeps of different nodes.
The only rule that the adversary has to obey regarding delivery of different
beeps sent by the same node, is that they must be delivered in the same order
as they were sent, and cannot be collapsed in delivery, i.e. two beeps cannot be
delivered as one beep. This type of asynchronous adversary was called the node
adversary in [4] and the strong adversary in [3]. The motivation is similar as
in [4, 3]. Nodes execute the broadcasting protocol concurrently with other tasks.
Beeps to be sent by a node are prepared for transmission (stored), and then each
beep (soft or loud) is transmitted in order. The (unknown) delay between these
actions is decided by the adversary. In our terminology, storing for transmission
corresponds to sending and actual transmission corresponds to simultaneous
delivery to all neighbors. We assume that, at short distances between nodes, the
travel time of the beep is negligible. The delay between storing and transmitting

2

(in our terminology, between sending and delivery) depends on how busy the
node is with other concurrently performed computational tasks.

At the receiving end, a node can hear something only if it is silent in the
delivery round. If exactly one soft beep is delivered to a node in a round, it
is heard as soft. Any other combination of beeps delivered to a node from its
neighbors in a round (a single strong beep, or more than one beep of any kind) is
heard as a loud beep. This way of modeling reception corresponds to a threshold
in the listening device: the strength of a single soft beep is below the threshold,
and the strength of a loud beep, or the combined strength of more than one beep
is above the threshold. The cost of a broadcasting algorithm is the total number
of beeps sent by all nodes.

The network is modeled as an n-node simple connected undirected graph,
referred to as graph. We use terms “network” and “graph” interchangeably. We
consider four levels of knowledge that nodes may have about the network:
1. anonymous networks: nodes do not have any labels and know nothing abut
the network;
2. ad-hoc networks: all nodes have distinct labels and every node knows only its
own label;
3. neighborhood-aware networks: all nodes have distinct labels, and every node
knows its label and labels of all neighbors;
4. full-knowledge networks: all nodes have distinct labels, every node knows the
entire labeled map of the network and the identity of the source.

The messages to be broadcast are from some set of size M , called the message
space. Without loss of generality, let the message space be the set of integers
{0, . . . ,M − 1}. Except for the anonymous networks, all nodes have different
labels from the set of integers {0, . . . , L− 1}, called the label space.

Our results. Our aim is to study how different levels of knowledge about
the network influence feasibility and cost of broadcasting in the asynchronous
bivalent beeping model. We first show that, in the anonymous case, broadcasting
is impossible even for very simple networks. For each of the other three knowl-
edge levels, broadcasting is feasible, and we provide upper and lower bounds
on the minimum cost of a broadcasting algorithm, in terms of the sizes of the
network, of the message space and of the label space. Showing an upper bound
UB on the cost of broadcasting at a given knowledge level means showing an
algorithm which accomplishes broadcasting at this cost, for any network with
this knowledge level, and any message to be broadcast. Showing a lower bound
LB means that, for any algorithm of lower cost, there is some network at this
knowledge level, and some message for which the algorithm fails.

For ad-hoc networks we give an algorithm of cost 2O(L+M)2 1. Since this
cost is very large, it is natural to ask if there are broadcasting algorithms of
cost polynomial in L and M . The answer turns out to be negative: indeed, we
prove a lower bound of Ω(2L) on the cost of any broadcasting algorithm in ad-
hoc networks. For neighborhood-aware networks we prove an upper bound of

1 If one of the parameters, L or M , is known to the nodes, this complexity can be
decreased to 2O(LM) (see section 4).

3

O(n logM + e logL), where n is the number of nodes and e is the number of
edges, and a lower bound of Ω(n logM +n log logL). Finally, for full-knowledge
networks, we provide matching upper and lower bounds of Θ(n logM).

Note that the above bounds show separations, in terms of broadcasting
cost, between all the knowledge levels, in the case often appearing in appli-
cations, when the message space is some predetermined dictionary independent
of the network, i.e., its size M is O(1). Indeed, since L ≥ n, the lower bound
Ω(2L) for ad-hoc networks exceed the (worst-case) upper bound O(n2 logL) for
known-neighborhood networks, and the lower bound Ω(n log logL) for known-
neighborhood networks exceed the tight boundΘ(n) for full-knowledge networks.

It is interesting to compare the sizes of the two broadcasting cost jumps: the
jump between ad-hoc and known-neighborhood networks, and the jump between
known-neighborhood and full-knowledge networks. We illustrate it for the com-
monly assumed case, when the size L of the label space is polynomial in the size
n of the network (and the size of the message space is O(1), as before). The first
jump is at least from Ω(2n) to O(n2 log n), i.e., exponential in n. The second
jump is at most from O(n2 log n) to Θ(n), i.e., polynomial in n. This may seem
slightly counterintuitive, because both in ad-hoc and in known-neighborhood
networks, information available to nodes is local, while in full-knowledge net-
works it is global. So at first glance it would seem that the larger jump should
occur between known-neighborhood and full-knowledge networks.

Related work. Broadcasting has been studied in various models for over
four decades. Early work focused on the telephone model, where in each round
communication proceeds between pairs of nodes forming a matching. Determin-
istic broadcasting in this model has been studied, e.g., in [22]. In [9] the authors
studied randomized broadcasting. In the telephone model, studies focused on the
time of the communication task and on the number of messages it uses. Early lit-
erature on communication in the telephone and related models is surveyed in [11,
14]. In [2] the authors studied tradeoffs between the radius within which nodes
know the network and broadcasting efficiency in the message passing model.
Fault-tolerant aspects of broadcasting and gossiping are surveyed in [20].

More recently, broadcasting has been studied in the radio model. While ra-
dio networks are used to model wireless communication, similarly as the beeping
model, in radio networks nodes send entire messages of some bounded, or even
unbounded size in a single round, which makes communication drastically differ-
ent from that in the beeping model. The focus in the literature on radio networks
was usually on the time of communication. Deterministic broadcasting in the ra-
dio model was studied, e.g., in [5, 17], and randomized broadcasting was studied
in [18]. The book [16] is devoted to algorithmic aspects of communication in
radio networks.

In all the above papers, radio communication was supposed synchronous, i.e.,
the message was delivered in the same round in which it was sent. Asynchronous
broadcasting in radio networks was studied in [3, 4, 21]. It is important to stress
a significant difference between the radio and the beeping models, in the context
of asynchrony. Since in the radio model large messages can be sent and delivered

4

in a single round, asynchrony cannot alter a message, it can only destroy it,
by creating unwanted interference. In the beeping model, however, beeps from
various senders can be simultaneously delivered by the adversary, thus altering
the intended numbers and types of beeps, creating “new” messages.

The beeping model has been introduced in [6] for vertex coloring, and used
in [1] to solve the MIS problem, and in [23] to construct a minimum connected
dominating set. Randomized leader election in the radio and in the beeping
model was studied in [12]. Deterministic leader election in the beeping model
was investigated in [10]. In [15], the authors studied the tasks of global syn-
chronization and consensus using beeps, in the presence of faults. In [13], the
authors studied the quantity of computational resources needed to solve prob-
lems in complete networks using beeps. In [19], various distributed problems
were investigated under several variations of the beeping model from [6], and
randomized emulations between these models were shown. In [8], the authors
studied the task of rendezvous of agents communicating by beeps. The time of
synchronous broadcasting and gossiping with beeps was studied in [7].

2 Preliminaries

The following observation shows that asynchronous broadcasting with beeps of
uniform strength is impossible even in very simple graphs. This is the reason
why we use the bivalent beeping model.

Proposition 1. Asynchronous broadcasting using beeps of uniform strength is
impossible even in the two-node graph.

Proof. Consider two source messages, m1 and m2, that have to be transmitted
from one node to the other in the two-node graph. Suppose that the source
sends k1 beeps for message m1 and k2 beeps for message m2, where k1 ≤ k2,
without loss of generality. The adversary delivers the beeps for message m1 in
consecutive rounds r, r+ 1, . . . , r+ k1 − 1. Suppose that s is the round in which
the receiving node correctly decodes message m1. Then, for message m2, the
adversary delivers k1 beeps in rounds r, r+ 1, . . . , r+ k1 − 1, and the remaining
k2 − k1 beeps in rounds t + 1, . . . , t + k2 − k1, where t = max(s, r + k1 − 1).
However, in round s, the receiving node has exactly the same information as for
message m1, and hence it incorrectly outputs the message as m1. �

In the rest of the paper we use the asynchronous bivalent beeping model,
described in the introduction.

3 Anonymous networks

In this section we show that, if nodes do not have labels, then broadcasting is
impossible, even for very simple graphs, and even when nodes know the topology
of the network.

5

Proposition 2. Broadcasting for anonymous networks is impossible even in the
cycle of size 4.

Proof. Consider the anonymous cycle of size 4, and consider a hypothetical
broadcasting algorithm A. For convenience, we label nodes a, b, c, d, in clock-
wise order. This is for the negative argument only: nodes do not have access to
these labels. Suppose that node a is the source. Notice that, in any execution of
algorithm A, nodes b and d send exactly the same beeps in the same rounds, as
in each round they have the same history: indeed, they receive the same beeps
in the same rounds, they are identical, and execute the same deterministic al-
gorithm. Let m1 and m2 be two different messages that have to be broadcast
by the source. Consider two executions of the algorithm A: execution E1, in
which the source broadcasts message m1, and execution E2, in which the source
broadcasts message m2. Let s1 be the sequence of beeps (soft or loud) sent by
b and d in execution E1 and let s2 be the sequence of beeps sent by b and d in
execution E2. Let k1 be the length of s1, and let k2 be the length of s2, where
k1 ≤ k2, without loss of generality. In both executions, the adversary delivers
consecutive beeps from b and from d in the same rounds. As a result, node c
hears only loud beeps: k1 of them in execution E1, and k2 of them in execution
E2. The choice of the rounds of delivery of bits from b and d is as follows. In
execution E1 these are consecutive rounds r, r + 1, . . . , r + k1 − 1, starting from
some round r. Suppose that s is the round in which node c correctly outputs
message m1. Then, in execution E2, the adversary delivers the first k1 beeps
from b and d in rounds r, r + 1, . . . , r + k1 − 1, and the remaining k2 − k1 beeps
in rounds t+ 1, . . . , t+k2−k1, where t = max(s, , r+k1−1). In round s, node c
has the same history in executions E1 and E2: it heard a loud beep in the same
rounds, in both these executions. Hence, in execution E2, it incorrectly outputs
the message m1 in round s. �

4 Ad-hoc networks

In this section we show that providing nodes with distinct labels makes broad-
casting possible in arbitrary graphs, even if nodes do not have any initial knowl-
edge about the network, except their own label. Let N denote the set of non-
negative integers. Consider the function ϕ : N × N −→ N given by the for-
mula ϕ(x, y) = x + (x + y)(x + y + 1)/2. This is a bijection with the property
ϕ(x, y) ∈ O((x + y)2). Intuitively, this is the “snake function” arranging all
couples of non-negative integers into one infinite sequence.

The following algorithm is executed by an active node with label `. In the
beginning, all nodes are active. The part Receive is executed by any node other
than the source. Its result is outputting the source message. This part is skipped
by the source, as it knows the message. The part Send is executed by the source
at the beginning of the algorithm, and it is executed by every other node upon
outputting the source message in the part Receive. After executing the part Send,
the node becomes non-active.

6

Algorithm Ad-hoc

Part 1. Receive
Wait until the number of soft beeps received is at least 1/2 of the number of
loud beeps received.
Let t be the number of loud beeps received, and let z be the largest integer such
that 8z ≤ t.
Compute the unique couple of non-negative integers (x, y), such that ϕ(x, y) = z.
Output y as the source message.

Part 2. Send
Compute ϕ(`, y), where y is the source message.
Send 8ϕ(`,y) loud beeps, followed by 8ϕ(`,y) soft beeps. �

The following result shows that Algorithm Ad-hoc is correct, and estimates
its cost.

Theorem 1. Upon completion of Algorithm Ad-hoc in an arbitrary graph, ev-
ery node correctly outputs the source message. The cost of the algorithm is
2O((L+M)2).

Proof. The proof of correctness is split into two parts. We first show that no
node outputs the source message incorrectly, and then we prove that every node
outputs the source message in finite time. Let m be the source message. The
first part of the proof is by contradiction. Suppose that some node outputs the
source message incorrectly, let r be the first round when this happens, and let
u be a node with label `, incorrectly outputting the source message in round r.
Let u1, . . . , uk be the nodes adjacent to u whose at least one beep is delivered by
round r, ordered in increasing order of their labels `1, . . . , `k. Since u outputs the
source message in round r, the set of nodes {u1, . . . , uk} is non-empty. Moreover,
all nodes u1, . . . , uk must have outputted the source message before round r
(because they already sent some beeps by round r), and hence they outputted
it correctly. Let 1 ≤ i ≤ k be the largest integer j, such that at least one soft
beep of node uj was delivered by round r.

Suppose that t was the number of loud beeps heard by u by the round r.
Since u outputted the source message incorrectly, the largest integer z′, such
that 8z

′ ≤ t, cannot be equal to z = ϕ(`i,m). (If it were, node u would correctly
compute the source message m because ϕ is a bijection.) The integer z′ cannot
be smaller than z because node u heard at least 8z loud beeps sent by node ui.
Hence z′ ≥ z + 1. This implies that node u must have heard at least 8z+1 loud
beeps by round r. How many soft beeps could it hear by round r? All these beeps
could come only from nodes u1, . . . , ui. The total number of soft beeps sent by
these nodes is

∑i
j=1 8ϕ(`j ,m). Since ϕ(`1,m) < ϕ(`2,m) < · · · < ϕ(`i,m), we

have
∑i
j=1 8ϕ(`j ,m) < 8

7 ·8
ϕ(`i,m) = 8

7 ·8
z. On the other hand, the number of soft

beeps heard by node u by round r must be at least 1/2 of the number of loud
beeps it heard by round r. This implies 8

7 ·8
z ≥ 1

2 ·8
z+1, which is a contradiction.

This completes the first part of the proof.

7

We now prove that every node outputs the source message in finite time.
This part of the proof is also by contradiction. Suppose that some node never
outputs the source message. Since the source itself knows the source message,
and the graph is connected, there must exist adjacent nodes u and v, such that
u outputs the source message in finite time and v does not. Let v1, . . . , vs be the
nodes adjacent to v that ever send at least one beep, ordered in increasing order of
their labels λ1, . . . , λs. The set of nodes {v1, . . . , vs} is non-empty. We show that,
at some point, the number of soft beeps heard by v is at least 1/2 of the number
of loud beeps heard by v. Indeed, assume that this did not happen before all
beeps of all nodes v1, . . . , vs are delivered. The number of all beeps sent by nodes
v1, . . . , vs−1 is 2 ·

∑s−1
j=1 8ϕ(λj ,m). Since ϕ(λ1,m) < ϕ(λ2,m) < · · · < ϕ(λs,m),

we have 2 ·
∑s−1
j=1 8ϕ(λj ,m) < 2

7 · 8
ϕ(λs,m). In the worst case, these beeps can be

delivered by the adversary simultaneously with the same number (fewer than
2
7 · 8

ϕ(λs,m)) of soft beeps sent by node vs, thus producing loud beeps heard by
node v. This would decrease the number of soft beeps heard by v and increase
the number of loud beeps heard by this node, but the change cannot be too
big. Indeed, this gives fewer than 9

7 · 8
ϕ(λs,m) loud beeps heard by v. On the

other hand, node v hears at least 5
7 · 4

ϕ(λs,m) soft beeps sent by vs and left
intact (not delivered simultaneously with other beeps) by the adversary. Hence
the number of soft beeps heard by node v is at least 1/2 of the number of loud
beeps heard by it. It follows that node v outputs the source message, contrary
to our assumption.

This completes the proof of correctness of Algorithm Ad-hoc. We now esti-
mate its cost. A node with label ` sends 2 · 8ϕ(`,m) beeps, where m is the source
message. Hence the cost of Algorithm Ad-hoc in an n-node network is at most
2n · 8ϕ(L,M). Since ϕ(L,M) ∈ O((L + M)2), and ϕ(L,M) ≥ L ≥ n, this gives
the cost 2O((L+M)2). �

Remark. Notice that, if nodes know one of the parameters, either L or M ,
then the bijection ϕ can be replaced by a more efficient one-to-one function
from the product {0, . . . , L− 1} × {0, . . . ,M − 1} to non-negative integers. For
example, if L is known, then this function can be ψ(`,m) = mL + `, and if M
is known, then this function can be ψ′(`,m) = `M + m. The values of these
functions are in O(LM), and hence, if we substitute one of them for ϕ, the cost
of the algorithm becomes 2O(LM).

As we have seen above, the cost of Algorithm Ad-hoc is very large: even with
knowledge of L or M , it is exponential in the product of these parameters. Hence,
it is natural to ask if there are broadcasting algorithms, for ad-hoc networks, with
cost polynomial in L and M . Our next result shows that the answer is negative.
Before proving it we recall a notion and a fact from [3].

A set S of positive integers is dominated if, for any finite subset T of S, there
exists t ∈ T such that t is larger than the sum of all t′ 6= t in T .

Lemma 1. Let S be a finite dominated set and let k be its size. Then there
exists x ∈ S such that x ≥ 2k−1.

8

Theorem 2. For arbitrary integers L ≥ 4, there exist L-node ad-hoc networks,
for which the cost of every broadcasting algorithm is Ω(2L).

Proof. Let A be any broadcasting algorithm. For any set S ⊆ {1, . . . , L− 2}, of
size at least 2, the graph GS is defined as follows. GS has |S| + 2 nodes with
labels from the set S ∪{0, L− 1}. Each of the nodes with labels in S is adjacent
to each of the nodes with labels 0 and L − 1, and there are no other edges in
the graph. The node with label 0 is the source, and the node with label L− 1 is
called the sink.

We will consider executions of algorithm A in graphs GS , in which the ad-
versary obeys the following rules concerning the delivery of beeps sent by the
source and the sink:

1. All beeps sent by the source after it heard some beep, are delivered after
the round when the sink outputs the source message.

2. All beeps sent by the sink are delivered after the round in which the sink
outputs the source message.

Since the considered networks are ad-hoc, i.e., a priori, every node knows only
its own label, and the adversary obeys the above rules, the number of beeps sent
by a node with a given label ` ∈ {1, . . . , L − 2} by the round in which the
sink outputs the source message, depends only on this label and on the source
message, and not on the graph GS in which the algorithm is executed. Indeed,
the history of a node with label ` ∈ {1, . . . , L − 2}, by the round in which the
sink outputs the source message, is the same in all graphs GS , for a given source
message m.

Consider the execution of algorithm A in the graph G{1,...,L−2}, for a fixed
source message m. Let B(`), for ` ∈ {1, . . . , L − 2}, be the number of beeps of
both kinds, that the node with label ` sends by the round in which the sink
outputs the source message. If the set of integers I = {B(`) : ` ∈ {1, . . . , L− 2}}
is dominated, then by Lemma 1, some integer in this set is at least 2L−3, and
we are done. Otherwise, there exists a subset T ⊆ {1, . . . , L − 2}, with the
following property. If t ∈ T is such that B(t) ≥ B(t′), for all t′ ∈ T \ {t},
then B(t) ≤

∑
t′∈T\{t}B(t′). Consider the execution E of algorithm A in the

graph GT , for the same source message m. As observed above, the number
of beeps of both kinds, that the node with label ` sends in this execution by
the round in which the sink outputs the source message, is B(`). The adversary
delivers beeps sent by nodes with labels from T , in consecutive rounds, delivering
simultaneously a beep sent by the node with label t with one or more beeps sent
by nodes with labels t′ ∈ T \ {t}, in such a way that in no round a single beep is
delivered. This is possible due to the inequality B(t) ≤

∑
t′∈T\{t}B(t′). Hence

the sink hears only loud beeps.
Now, consider a different source message m′. The same argument as above

shows that, if the cost of the algorithm A on the graph G{1,...,L−2} is smaller
than 2L−3, then there exists some set T ′ ⊆ {1, . . . , L − 2}, such that, in the
execution E′ of the algorithm A on the graph GT ′ , with the source message m′,
the sink hears only loud beeps.

9

Suppose that, by the time it outputs the source message, the sink hears k
loud beeps in the execution E and hears k′ loud beeps in the execution E′.
Without loss of generality, assume that k ≤ k′. The choice of rounds of delivery
of these beeps by the adversary is the following.

In execution E, these are consecutive rounds r, r + 1, . . . , r + k − 1, starting
from some round r. Suppose that s is the round in which the sink correctly
outputs message m. Then, in execution E′, the adversary first delivers beeps in
rounds r, r + 1, . . . , r + k − 1, and the remaining k′ − k rounds of beep delivery
are z + 1, . . . , z + k′ − k, where z = max(s, , r + k − 1). In round s, the sink
has the same history in executions E and E′: it heard only loud beeps, and this
happened in the same rounds, in both these executions. Hence, in execution E′,
it incorrectly outputs the message m in round s.

The obtained contradiction comes from assuming that the cost of algorithm
A on the graph G{1,...,L−2} is smaller than 2L−3, for all source messages. This
completes the proof. �

5 Neighborhood-aware networks

In this section we assume that all nodes have distinct labels, and that each of
them knows its own label and the labels of all its neighbors. This seemingly small
increase of knowledge, compared to ad-hoc networks (the knowledge of every
node is still local) turns out to decrease the cost of broadcasting in a dramatic
way. In order to guarantee a low cost of broadcasting, we have to encode messages
by sequences of beeps very efficiently. The algorithm uses messages of two types:
non-negative integers and triples of non-negative integers. These messages have
to be encoded by strings of beeps of length logarithmic in the values of these
integers, in such a way that the recipient knows when the string starts and
ends, and can unambiguously decode the message from the string. However, as
opposed to Algorithm Ad-hoc in which nodes sent exponentially many beeps,
such efficient encoding is very vulnerable to possible actions of the adversary
that can arbitrarily interleave delivered beeps coming from different neighbors
of a node. In order to avoid this, we design our algorithm in such a way that
beeps encoding a message sent by some node are delivered before any other
node starts sending its own beeps. In this way, the danger of interleaving beeps
is avoided.

Before presenting the algorithm, we define the encoding of integers and of
their triples, announced above. We denote a loud beep by l, a soft beep by s,
and we use the symbol · for the concatenation of sequences of beeps. Let k be a
non-negative integer, and let (c1, . . . , cr) be its binary representation. Denote by
S(k) the sequence of 2r beeps resulting from (c1, . . . , cr) by replacing every bit
ci = 0 by (ls) and by replacing every bit cj = 1 by (sl). The code of an integer
k, denoted by [k], is the sequence (ll) · S(k) · (ll). The code of a triple (a, b, c) of
integers, denoted by [a, b, c], is the sequence (ll) · S(a) · (ss) · S(b) · (ss) · S(c) ·
(ll). Note that a sequence of 2 loud beeps marks the beginning and end of a
message, and all messages contain an even number of beeps, logarithmic in the

10

integers transmitted. A node at the receiving end can determine the beginning
of the message as a sequence σ of 2 consecutive loud beeps, and the end of
the message as the first sequence σ′ of 2 consecutive loud beeps starting after
the end of σ at an odd position, where the first bit of the sequence σ is at
position 1. In order to decode the content of the message (ll) · α · (ll), with the
beginning and end already correctly identified, a node looks for separators (ss)
starting at odd positions of α. There are either 0 or 2 such separators. In the first
case, the transmitted message was an integer, and the node decodes its binary
representation by replacing each couple (ls) by 0 and each couple (sl) by 1. In
the second case, the node can unambiguously represent α as α1 ·(ss)·α2 ·(ss)·α3,
where each αi has even length, and decode α1, α2, α3 as above.

Using the above encoding, we are now able to describe our broadcasting
algorithm. At a high level, it is organized as a depth-first traversal of the graph,
starting from the source. We will use the instructions “send [a]” and “send
[a, b, c]” that are procedures sending the above described sequences of beeps, in
consecutive rounds. A message [a], where a ∈ {0, 1, . . .M − 1}, is always the
source message to be broadcast. There are two kinds of messages of type “triple
of integers”: For a, b ∈ {0, 1, . . . L−1}, a message of the form [a, b, 0] corresponds
to a forward DFS edge traversal from the node with label a to a node with label b,
and a message of the form [a, b, 1] corresponds to a backward DFS edge traversal
from the node with label a to a node with label b.

The algorithm is executed by a node with label `. The actions of the node
alternate between executing “send” instructions and listening. The algorithm
is organized in such a way that the following disjointness property is satisfied.
Consider a node u executing some send instruction I(u). Let σ(u) be the segment
of consecutive rounds between the sending of the first beep of instruction I(u)
and the delivery of the last bit of this instruction. Then, for any two nodes u and
v, executing any send instructions I(u) and I(v), the segments of rounds σ(u)
and σ(v) are disjoint. This property permits to identify circulating messages as
distinct “packets”, and use them to implement a DFS traversal.

When the node listens, it watches for the beginning and end of a message
formed by the delivered beeps. When it detects a complete message, it reacts to
it in one of two ways: it either keeps listening and watches for another complete
message, or it reacts by executing some “send” instruction. More specifically,
the actions of the node with label `, other than the source, are as follows. After
getting the source message and the first forward DFS message [a, `, 0], addressed
to it and coming from a node with label a, the node with label ` starts spreading
the message to all its neighbors with labels ai, except that with label a, by
sending the decoded source message [m] and sending forward DFS messages
[`, ai, 0] addressed to them, in increasing order of labels. In order to transit from
one neighbor to the next, the node ` waits for a backward message [ai, `, 1],
addressed to it. In the meantime, node ` refuses all subsequent forward DFS
messages [b, `, 0] , for b 6= a, addressed to it, responding by a backward DFS
message [`, b, 1]. The actions of the source are similar.

The pseudocode of the algorithm follows.

11

Algorithm Neighborhood-aware

if the executing node is the source, and the source message is m then
message← m
let (a1, a2, . . . , as) be labels of all the neighbors of the node,
in increasing order
Spread(a1, . . . , as)
whenever a message [b, `, 0], for some integer b, is decoded then

send [`, b, 1]
else

when a message [m] is decoded for the first time, then
message← m
output message as the source message

when a message [a, `, 0] is decoded for the first time, then
let (a1, a2, . . . , as) be labels of all the neighbors of the node,
except a, in increasing order
Spread(a1, . . . , as)
send [`, a, 1]
whenever a message [b, `, 0], for some b 6= a, is decoded then

send [`, b, 1] �

The procedure Spread, used by the algorithm and executed by a node with
label `, is described as follows.

Procedure Spread(a1, . . . , as)

send [message]
i← 1
while i ≤ s do

send [`, ai, 0]
when the message [ai, `, 1] is decoded then

i← i+ 1 �
Theorem 3. Upon completion of Algorithm Neighborhood-aware in an arbi-
trary n-node graph with e edges, every node correctly decodes the source message.
The cost of the algorithm is O(n logM + e logL).

Proof. In view of the disjointness property, all messages are correctly decoded by
their addressees. Since the control messages [a, b, 0] and [a, b, 1] travel in a DFS
fashion, and each message [a, b, 0] is preceded by the source message [m], all nodes
get the source message and decode it correctly. This proves the correctness of the
algorithm. To estimate its cost, note that each node sends the source message
[m] once, and, for any pair of adjacent nodes a and b, two control messages
among [a, b, 0], [a, b, 1], [b, a, 0], [b, a, 1] are sent. Since the source message [m]
consists of O(logM) beeps, and each control message consists of O(logL) beeps,
the total cost of the algorithm is O(n logM + e logL). �

Before proving our lower bound on the cost of broadcasting algorithms in
neighborhood-aware networks, we prove the following two lemmas.

12

Lemma 2. Every broadcasting algorithm has cost Ω(logM) in the two-node
graph.

Proof. Suppose that there exists a broadcasting algorithm that has cost at most
1
2 logM in the two node graph, where the node u is the source, and the node v is
the other node of the graph. For any source message m, the adversary delivers all
the beeps sent by u in consecutive rounds. Since there are fewer than M different
binary strings of length at most 1

2 logM , for two different source messages, m1

and m2, the strings of beeps received by u must be identical. Hence the message
outputted by v must be identical for m1 and m2, and thus it must be incorrect
for one of them. �

Lemma 3. Every broadcasting algorithm has cost Ω(log logL) in some cycle of
size 4.

Proof. Consider a broadcasting algorithm A working for all neighborhood-aware
cycles of size 4. Suppose that the cost of algorithm A in all such cycles is at most
1
2 log logL. Consider a cycle of size 4, and call its nodes a, b, c, d, in clockwise
order. Suppose that node a is the source. Let 0 be the label of node a, and let
L−1 be the label of node c. The adversary delivers all beeps possibly sent by node
c, only after this node outputs the source message. Hence, before the decision
by node c, nodes b and d hear only beeps from the source a. The adversary
delivers all beeps sent by node a in consecutive rounds. Since node a can send at
most 1

2 log logL beeps, the set X of possible sequences of beeps heard by nodes
b and d has size at most

√
logL. Let N = {0, 1, . . . , b 12 log logLc}. Since each

of the nodes b and d can send at most 1
2 log logL beeps, the number of beeps

sent by each of these nodes must be an integer from the set N . For any label
` ∈ {1, . . . , L− 2}, let Φ` : X −→ N be the function defined as follows: Φ`(x) is
the number of beeps sent by the node b or d, if it has label `, and if it obtained
the sequence x of beeps. There are |N ||X| < L−2 such functions, for sufficiently
large L. Hence there exist labels `1 6= `2 from the set {1, . . . , L − 2}, for which
Φ`1 = Φ`2 . Assign these labels to the nodes b and d. In the obtained cycle C,
nodes b and d send the same number of beeps, regardless of the sequence of
beeps obtained from a. In particular, this will happen in two executions, E1 and
E2, of algorithm A on the cycle C, where execution E1 corresponds to source
message m1, and execution E2 corresponds to source message m2, for m1 6= m2.

In both executions, the adversary delivers consecutive beeps from b and from
d in the same rounds. As a result, node c hears only loud beeps: k1 of them
in execution E1, and k2 of them in execution E2. Without loss of generality,
suppose that k1 ≤ k2. The choice of the rounds of delivery of bits from b and d
is as follows. In execution E1 these are consecutive rounds r, r+1, . . . , r+k1−1,
starting from some round r. Suppose that s is the round in which node c correctly
outputs message m1. Then, in execution E2, the adversary delivers the first k1

beeps from b and d in rounds r, r + 1, . . . , r + k1 − 1, and the remaining k2 − k1

beeps in rounds t + 1, . . . , t + k2 − k1, where t = max(s, , r + k1 − 1). In round
s, node c has the same history in executions E1 and E2: it heard a loud beep in

13

the same rounds, in both these executions. Hence, in execution E2, it incorrectly
outputs the message m1. �

The following result gives a lower bound on the cost of any broadcasting
algorithm in neighborhood-aware networks.

Theorem 4. For arbitrarily large integers n, there exist n-node neighborhood-
aware networks for which every broadcasting algorithm has cost Ω(n logM +
n log logL).

Proof. For any positive integer k, consider the graph Gk defined as follows. Let
Pk be a simple path of length k, with extremities a and b. Consider pairwise
disjoint copies C1, . . . , Ck of the cycle of size 4, whose all nodes are distinct from
nodes of the path. Let ai, bi, ci, di be the nodes of the ith copy in clockwise order.
Join the node a1 to the node b by an edge, and for every 1 ≤ i < k, join the node
ci to the node ai+1 by an edge. The obtained graph has n ∈ Θ(k) nodes. We
now assign the labels to nodes of Gk as follows. Nodes bi and di in cycles Ci, for
i = 1, . . . , k, are assigned distinct labels by induction. For any i, we consider the
set of all labels that were not used previously and find among them two labels
`1 6= `2 for which Φ`1 = Φ`2 , where Φ`, for any label `, was defined in the proof
of Lemma 3. This can be done similarly as in the quoted proof, because the
number of still available labels is Θ(L). Finally, nodes of the path and all nodes
ai and ci are assigned consecutive distinct labels among the remaining pool of
labels.

Let the node a be the source, and consider any broadcasting algorithm on
graph Gk. By Lemma 2, each node of the path, other than b, has to transmit
Ω(logM) beeps, for otherwise the next node cannot get the message. By Lemma
3, the total cost of the algorithm in each subgraph Ci, for i < k, must be
Ω(log logL), for otherwise the nodes of the next copy cannot get the message.
(Note that edges of the path Pk and edges joining consecutive copies of the
cycle, are bridges in Gk.) Hence the total cost of the algorithm is Ω(k logM +
k log logL) = Ω(n logM + n log logL). �

6 Full-knowledge networks

In this section we consider broadcasting in networks whose nodes have the en-
tire labeled map of the network, and know the identity of the source. With this
complete knowledge, all nodes can agree on the same spanning tree T of the
network, rooted at the source. (All trees rooted at the source can be canonically
coded by binary strings, and the tree T can be chosen as that with lexicograph-
ically smallest code.) Let S be a DFS traversal of the tree T in which children
of every node are explored in increasing order of their labels. The Eulerian tour
of the tree T corresponding to this traversal can be represented as a sequence
(a1, . . . , a2(n−1)) of length 2(n− 1) of node labels with repetitions, where ai cor-
responds to the ith edge traversal in the tour, from the node with label ai to
the node with label ai+1.

14

The only message circulating in the network is the message [m], where m is
the source message, and [m] is the encoding of this integer, described in Section
5. The instruction send [m] is the procedure of sending beeps of the encoding
[m] in consecutive rounds. Similarly as in Algorithm Neighborhood-aware, the
disjointness property is satisfied, and hence each message can be correctly de-
coded by adjacent nodes. The idea of the algorithm is the following. Every node
knows to which terms of the sequence (a1, . . . , a2(n−1)) its label corresponds. It
sends the message [m] when the turn of such a term of the sequence comes.
(Many nodes send messages many times.) In order to know when this happens,
the node computes how many previous messages it should get before from all
adjacent nodes, and when this number of messages is received, it proceeds with
the execution of the send [m] instruction corresponding to the given term of the
sequence.

The algorithm is executed by a node with label `, when the source message
is m. The pseudocode of the algorithm follows.

Algorithm Full-knowledge

if the executing node is not the source then
when a message [m] is decoded for the first time, then

output message as the source message
identify all positions of label ` in the sequence (a1, . . . , a2(n−1))
let i1, . . . , ir be these positions
let x1 be the number of indices 1 ≤ j < a1, corresponding to labels aj of nodes
adjacent to the node with label `
for 1 < i ≤ r, let xi be the number of indices ai−1 < j < ai, corresponding to
labels aj of nodes adjacent to the node with label `
for 1 < i ≤ r, let yi =

∑i
t=1 xt

for k = 1 to r do
when a total of yk messages [m] is received then send [m] �

Theorem 5. Upon completion of Algorithm Full-knowledge in an arbitrary
n-node graph, every node correctly outputs the source message. The cost of the
algorithm is O(n logM).

Proof. The correctness of the algorithm follows from the fact that nodes send
messages whenever their turn comes in the sequence (a1, . . . , a2(n−1)) that cor-
responds to an Eulerian tour of a spanning tree T , and from the disjointness
property guaranteeing that the source message is always correctly decoded. The
total number of messages sent is 2(n − 1). Since each message corresponds to
O(logM) bits, the total cost of the algorithm is O(n logM). �

The following proposition shows that the cost of Algorithm Full-knowledge
is optimal in full-knowledge networks.

Proposition 3. For arbitrary integers n ≥ 2 there exist n-node graphs for which
the cost of any broadcasting algorithm is Ω(n logM).

15

Proof. Consider the simple path Pn with n nodes, one of whose extremities is the
source. Note that Lemma 2 holds for full-knowledge networks as well. By Lemma
2, each node of the path, other than the last node, has to transmit Ω(logM)
beeps, for otherwise the next node cannot get the message correctly. Hence the
cost of any broadcasting algorithm is Ω(n logM). �

7 Conclusion

We considered the cost of asynchronous broadcasting in networks with four dif-
ferent levels of knowledge: anonymous, ad-hoc, neighborhood-aware, and full-
knowledge. We proved that broadcasting in anonymous networks is impossible,
and we showed upper and lower bounds on the cost of broadcasting for the other
three levels of knowledge. Our results show cost separations between all of them.
While the bounds for full-knowledge networks are asymptotically tight, the other
bounds are not, and designing optimal-cost broadcasting algorithms for ad-hoc
and for neighborhood-aware networks is a natural open problem.

References

1. Y. Afek, N. Alon, Z. Bar-Joseph, A. Cornejo, B. Haeupler, F. Kuhn, Beeping
a maximal independent set. Proc. 25th International Symposium on Distributed
Computing (DISC 2011), LNCS 6950, 32-50.

2. B. Awerbuch, O. Goldreich, D. Peleg, R. Vainish, A trade-Off between information
and communication in broadcast protocols, J. ACM 37 (1990), 238-256.

3. T. Calamoneri, E. G. Fusco, A. Pelc, Impact of information on the complexity of
asynchronous radio broadcasting, Proc. 12th International Conference on Princi-
ples of Distributed Systems (OPODIS 2008), LNCS 5401, 311-330.

4. B. S. Chlebus, M. A. Rokicki, Centralized asynchronous broadcast in radio net-
works. Theor. Comput. Sci. 383((2007), 5-22.

5. M. Chrobak, L. Gasieniec, W. Rytter, Fast broadcasting and gossiping in radio
networks, J. Algorithms 43 (2002), 177-189.

6. A. Cornejo, F. Kuhn, Deploying wireless networks with beeps, Proc. 24th Interna-
tional Symposium on Distributed Computing (DISC 2010), LNCS 6343, 148-162.

7. A. Czumaj, P. Davis, Communicating with beeps, arxiv:1505.06107 [cs.DC] (2015)
8. S. Elouasbi, A. Pelc, Deterministic rendezvous with detection using beeps, Proc.

11th International Symposium on Algorithms and Experiments for Wireless Sensor
Networks (ALGOSENSORS 2015).

9. U. Feige, D. Peleg, P. Raghavan, E. Upfal, Randomized broadcast in networks,
Random Structures and Algorithms 1 (1990), 447-460.

10. K.-T. Forster, J. Seidel, R. Wattenhofer, Deterministic leader election in multi-hop
beeping networks, Proc.28th International Symposium on Distributed Computing
(DISC 2014), LNCS 8784, 212-226.

11. P. Fraigniaud, E. Lazard, Methods and problems of communication in usual net-
works, Disc. Appl. Math. 53 (1994), 79-133.

12. M. Ghaffari, B. Haeupler, Near optimal leader election in multi-hop radio networks,
Proc. 24th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2013),
748-766.

16

13. S. Gilbert, C. Newport, The computational power of beeps, Proc. 29th Interna-
tional Symposium on Distributed Computing (DISC 2015), 31-46.

14. S.M. Hedetniemi, S.T. Hedetniemi, A.L. Liestman, A survey of gossiping and
broadcasting in communication networks, Networks 18 (1988), 319-349.

15. K. Hounkanli, A. Miller, A. Pelc, Global Synchronization and Consensus Using
Beeps in a Fault-Prone MAC. CoRR abs/1508.06583 (2015)

16. D. Kowalski, Algorithmic Foundations of Communication in Radio Networks, Mor-
gan & Claypool Publishers, 2011.

17. D. Kowalski, A. Pelc, Time of deterministic broadcasting in radio networks with
local knowledge, SIAM Journal on Computing 33 (2004), 870-891.

18. E. Kushilevitz, Y. Mansour, An Omega(D log (N/D)) lower bound for broadcast
in radio networks. SIAM Journal on Computing 27 (1998), 702-712.

19. Y. Métivier, J. M. Robson, A. Zemmari, On distributed computing with beeps,
CoRR abs/1507.02721 (2015).

20. A. Pelc, Fault-tolerant broadcasting and gossiping in communication networks,
Networks 28 (1996), 143-156.

21. A. Pelc, Activating anonymous ad hoc radio networks, Distributed Computing 19
(2007), 361-371.

22. P. J. Slater, E. J. Cockayne, S. T. Hedetniemi, Information dissemination in trees,
SIAM Journal on Computing 10 (1981), 692-701.

23. J. Yu, L. Jia, D. Yu, G. Li, X. Cheng, Minimum connected dominating set con-
struction in wireless networks under the beeping model, Proc. IEEE Conference
on Computer Communications, (INFOCOM 2015), 972-980.

17

