
Concurrent use of write-once memory

James Aspnes∗ Keren Censor-Hillel† Eitan Yaakobi‡

June 23, 2016

Abstract

We consider the problem of implementing general shared-memory objects on top of write-once
bits, which can be changed from 0 to 1 but not back again. In a sequential setting, write-once
memory (WOM) codes have been developed that allow simulating memory that support multiple
writes, even of large values, setting an average of 1 + o(1) write-once bits per write. We show
that similar space efficiencies can be obtained in a concurrent setting, though at the cost of high
time complexity and fixed bound on the number of write operations. As an alternative, we give
an implementation that permits unboundedly many writes and has much better amortized time
complexity, but at the cost of unbounded space complexity. Whether one can obtain both low
time complexity and low space complexity in the same implementation remains open.

∗Yale University, Department of Computer Science, aspnes@cs.yale.edu.
†Technion, Department of Computer Science, ckeren@cs.technion.ac.il. Supported in part by the Israel Science

Foundation (grant 1696/14).
‡Technion, Department of Computer Science, yaakobi@cs.technion.ac.il.

1 Introduction
Write-once memory (WOM) is a storage medium with memory elements, called cells, that can only
increase their value. These media can be represented as a collection of binary cells, each of which
initially represents a bit value 0 that can be irreversibly overwritten with a bit value 1. WOM
codes, first introduced by Rivest and Shamir [33], enable to record data multiple times without
violating the asymmetry writing constraint in a WOM. The goal in the design of a WOM code is to
maximize the total number of bits that can be written to the memory in t writes, while preserving
the property that cells can only increase their level.

These codes were first motivated by storage media such as punch cards and optical storage.
However, in the last decade, a wide study of these codes re-emerged due to their connection to
Flash memories. Flash memories contain floating gate cells which are electrically charged with
electrons to represent the cell level. While it is fast and simple to increase a cell level, reducing its
level requires a long and cumbersome operation of first erasing its entire containing block and only
then programming relevant cells. Applying a WOM code enables additional writes before having
to physically erase the entire block.

This paper provides the first study of concurrency in write-once shared memory. We investigate
concurrent write-once memory from a theoretical viewpoint, which, in particular, means that we
consider the memory impossible to erase (as opposed to considering it to be expensive). We show
that any problem that can be solved in a standard shared-memory model can be solved in a write-
once memory model, at the cost of some overhead. Our goal is to provide an analysis of this cost,
both in terms of step complexity and space complexity.

Motivation: In addition to our interest in WOM as a computing model, our study is motivated
by two observations. First, WOM is not subject to the ABA problem, in which memory can
change back and forth going unnoticed, which is proven to be hard to overcome [1].

The second reason is that several known concurrent algorithms are already implemented using
write-once bits. In other words, for some specific problems, the overhead of using WOM can
be reduced compared to the general case. Examples of such implementations are the sifters
constructed by Alistarh and Aspnes [2] and by Giakkoupis and Woelfel [17], and some variants of
the conflict detectors, of Aspnes and Ellen [5].1 A max register [3] is another example of an
object that can be implemented using write-once bits (see overview in Section 5). Interestingly,
the covering arguments used to prove lower bounds on max registers [3] imply that no historyless
primitive can give a better implementation than write-once bits.

Yet these specific solutions do not immediately give a general implementation of arbitrary
shared-memory objects, and the question arises whether the space efficiencies obtained by WOM
codes in a sequential setting can transfer to a concurrent setting as well.

The challenge: To give a flavor of the challenge in adopting known WOM codes to concurrent
use, we explain a simple example in Table 1, introduced by Rivest and Shamir [33], which enables
the recording of two bits of information in three cells twice. It is possible to verify that after the
first 2-bit data vector is encoded into a 3-bit codeword, if the second 2-bit data vector is different
from the first, the 3-bit codeword into which it is encoded does not change any code bit 1 into a
code bit 0, ensuring that it can be recorded in the write-once medium.

1This does not include the Θ(log m/ log log m)-step m-valued conflict detector that appears in [5], but does include
a simpler Θ(log m)-step conflict detector in which a write of a value whose bits are xk−1, . . . , x0 is done by setting to
1 the corresponding bits A[i][xi] in a k × 2 array A.

1

Data bits First write Second write
00 000 111
10 100 011
01 010 101
11 001 110

Table 1: A WOM code Example

Suppose now that the above code is used in a concurrent WOM system, and that two processes
p1 and p2 invoke write operations with input data bits 10 and 01, respectively. This means that p1
needs to write 100 into the memory, and p2 needs to write 010 to it. In other words, p1 needs to set
the first of the three bits to 1, while p2 needs to set the second. Consider a schedule in which p1, p2
set their respective bit in some order, and afterwards another process p3 reads the shared memory.
The bits that it sees are 110, but these correspond to the input 11, which was never written into
the memory, violating the specification of the memory.

The difficulty above is amplified by the fact that since more than a single process is writing and
reading the content of the memory, it is not known what the value of t is, that is, how many writes
have occurred so far. This is needed in the above example for both writing and reading.

We emphasize that there is a significant amount of fundamental simulations of different types of
registers in the literature of distributed computing (see, e.g., [7, Chpater 10] and [21, Chapter 4]).
The above WOM example satisfies the definition of a single-writer-multi-reader (SWMR) safe
register [28,29], in which a read that is not concurrent with a write returns a correct value. Known
simulations can use this object to construct multi-writer-multi-reader (MWMR) atomic
registers. However, these simulations do not comply with the restrictions that arise from WOM,
and hence different solutions must be sought.

1.1 Our contribution
We first show that with one additional bit that indicates to read operations that a write operation
has been completed, we can easily implement a write-once m-bit register. Then, we show how to
support t writes, still for a single writer, within a space complexity of 2m + t bits. After these
toy examples, our goal is to get closer to the t(1 + o(1))-space WOM code constructions for the
non-concurrent setting. Carefully adapting the tabular code of [33] to our concurrent setting, allows
us to obtain a SWMR m-bit register that supports t writes, with the following properties.

Theorem 4.1 There is an algorithm that implements an n-process SWMR m-bit register support-
ing up to t writes, using space complexity of (1 + o(1))t when t = ω(m2m), and with amortized step
complexity O(n2m) for a write and O(2m) for a read.

We then extend our tabular construction to support multiple writers, with the aid of a reduction
from MWMR registers to SWMR registers due to [24], and with incorporating safe-agreement
objects [10] in order to efficiently share space. Our result is summarized as follows.

Theorem 4.2 There is an algorithm that implements an n-process MWMR m-bit register that
supports up to t writes, using space complexity of (2 + o(1))t when t = ω((m + logn)n62m), and
with amortized step complexity O(n22m) for both write and read operations.

The drawback of the above implementation is its large step complexity. At the cost of increased
space complexity, we show how to build a WOM code on top of a max register, which allows

2

drastically reduced step complexities, as stated next. Here, a unique timestamp t is guaranteed to
be associated by the algorithm with each write operation.

Theorem 5.1 There is an algorithm that implements an n-process MWMR register of m bits with
unbounded space, where the amortized step complexity of a write operation that gets associated with
a timestamp t is O(log t+m+ logn) and the step complexity of a read operation that reads a value
associated with a timestamp t is O(log t+m+ logn).

Whether it is possible to obtain both low time complexity and low space complexity in the same
implementation remains an intriguing open question.

1.2 Additional related work
In their pioneering work, Rivest and Shamir also reported on more WOM code constructions,
including tabular WOM codes and linear WOM codes. Since then, several more constructions were
studied in the 1980’s and 1990’s [13,15,18], and more interest to these codes was given in the past
seven years; see e.g. [9, 11,12,14,34,35,37–40].

The capacity of a WOM was also rigorously investigated. The maximum sum-rate as well as
the capacity regions were studied in [19, 33, 36] with extensions to the non-binary case in [16].
The implementation of WOM codes in several applications such flash memories and phase-change
memories was recently explored in [26, 30, 31, 41, 42]. These works were motivated by the system
implementation on WOM codes in these memories, while taking into account the hardware and
architecture limitations when implementing these codes into the system.

Write-once memory should not be confused with sticky registers as defined by Plotkin [32],
which in some recent systems literature (e.g. [8]) have been described as registers with write-once
semantics. Sticky registers initially hold a default “empty” value, and any write after the first has
no effect. Such registers are equivalent to consensus objects, and thus significantly more powerful
than standard shared memory. In contrast, write-once memory as considered here and in the WOM
code literature is weaker than standard shared memory.

1.3 Model
We use a standard asynchronous shared memory system, restricted by the assumption that regis-
ters hold only a single bit and write operations can only write 1. We assume that all registers are
initially 0, as any register initialized to 1 conveys no information and can safely be omitted. Asyn-
chrony is modeled by interleaving according to a schedule chosen by an adversary. As we consider
only deterministic algorithms, it is reasonable to assume that the adversary has unrestricted knowl-
edge of the state of the system at all times, and can choose the schedule to make things as difficult
for the algorithm as possible. The computational power of the adversary is unlimited; indeed, the
adversary is essentially just a personification of the universal quantifier applied to schedules.

When implementing an object, our goal is linearizability [22]; given an execution of S of the
implemented object, there should exist a sequential execution S′ of the same object with the same
operations, such that whenever some operation π finishes in S before another operation π′ starts,
π precedes π′ in S′.

Time complexity: We use the standard notion of step complexity. The worst-case individual
step complexity of an operation is the maximum number of steps (read or write operations
applied to a write-once bit) carried out by the process executing the operation between when it
starts and finishes. The total step complexity of a collection of operations is the maximum
number of steps taken by all processes in any execution involving these operations.

3

We say that an operation π has amortized step complexity C(π) if, in any execution, the
total step complexity is bounded by the sum of the amortized step complexities of all operations in
the execution. Note that the amortized step complexity of an operation is not uniquely determined,
and there may be more than one way to trade off the amortized step complexities of operations.

Space complexity and storage: The straightforward measure of space complexity for write-
once memory is the number of objects (in our case, write-once bits) that can be accessed during the
execution of an algorithm or implementation. In traditional shared-memory models, this quantity
is fixed throughout the execution of the algorithm.

However, for one of our implementations, we will assume that the space is unbounded, in order
to exemplify its property of obtaining good step complexity despite supporting an unbounded
number of writes. A simple argument (see also Section 6) shows that infinite space is inherent for
supporting an unbounded number of writes in a write-once medium.

2 From write-once bits to write-once registers
We begin with two basic constructions of write-once single-writer registers from write-once bits.

2.1 A write-once single-writer register
A write-once single-writer register allows a single fixed writer process to write a value at most once
during an execution. Initially, it holds a special empty state ⊥, which is replaced by a value on
the first write. The width m of the register is the size of the value written in bits. The effect of
multiple writes is unspecified, although the writer process can simply choose to discard any writes
after the first.

To implement a width-m write-once single-writer register for larger m, we use m write-once bits
r[0] . . . r[m − 1] to hold the contents of the register, plus an extra Done bit to mark the register
as written. The writer fills in the content bits first, then sets Done; a reader looks at Done first,
and returns ⊥ if it is 0; if not, it reads and returns the values of the contents bits. This gives a
linearizable implementation, where the high-level operations are linearized according to the order
in which they access the Done bit; each read operation then returns either ⊥ or the value of the
unique write depending on whether it reads Done before or after the write sets it.

The reason we must have the Done bit is because otherwise the reader might observe an in-
termediate value which is not the input of the writer but rather only has a common prefix with
it.

Note that if write is called more than once then the behavior of the register is unspecified.

Theorem 2.1. The register implemented in Algorithm 1 is linearizable in any execution where
write is called at most once.

Proof. Given an execution, linearize all operations in the order in which they access the Done bit;
this is trivially consistent with the observable execution order. If there is no write operation, all
read operations return ⊥, consistent with a sequential execution. If there is a write operation,
then any read operation that observes 0 in Done linearizes before the write and returns ⊥, while
any read operation that observes 1 in Done linearizes after the write and returns the contents of
r, which will be equal to the value left in r by the writer, because no operation updates r after the
Done bit is set. So these return values are also consistent with the sequential execution.

4

1 procedure write(r, x)
2 for i← 0 . . .m− 1 do
3 r[i]← x[i] ;
4 Done← 1 ;
5 procedure read(r)
6 if Done = 1 then
7 for i← 0 . . .m− 1 do
8 x[i]← r[i] ;
9 return x ;

10 else
11 return ⊥;

Algorithm 1: Implementation of an m-bit single-writer write-once register

2.2 An erasable write-once single-writer register
It is easy to extend the construction of §2.1 to a write-once single-writer register that is also erasable.
This means that the register can be in one of three states: its initial state ⊥, a state in which it
holds a m-bit value, and an erased state >. The register may be in the erased state after it was
in a state in which it holds a m-bit value, but it cannot change its state after entering the erased
state.

Notice that having an erased state does not allow us to re-use the register because otherwise,
the reader may start reading the first bits of one m-bit value written and continue reading the last
bits of a different m-bit written value, obtaining an invalid return value that was never written.

To implement the erasable register, we add the procedure erase which simply sets another
shared bit Erased, and we modify the read procedure to check the Erased bit, as shown in Algo-
rithm 2.

1 procedure erase(r)
2 Erased← 1 ;
3 procedure read(r)
4 if Erased = 1 then
5 return >;
6 if Done = 1 then
7 for i← 0 . . .m− 1 do
8 x[i]← r[i] ;
9 return x ;

10 else
11 return ⊥;

Algorithm 2: Implementation of an erasable m-bit single-writer write-once register

Theorem 2.2. The register implemented in Algorithm 2 is linearizable in any execution where
write is called at most once and not after erase is called.

Proof. Given an execution, we linearize any write operation and all read operations that read 0
from erase before any erase operation and any read operation that reads 1 from erase.

5

Within the first set of operations, we linearize all operations in the order in which they access
the Done bit, which by the proof of Theorem 2.1 is consistent with the observable execution order,
as well as with a sequential execution.

Within the second set of operations, we linearize all read operations after the erase operation,
where the latter must be invoked in order for any read operation to read 1 from Erased. This is
trivially consistent with both the observable execution order and the sequential execution, because
all such read operations return >.

3 Atomic multi-bit writes
The constructions of the preceding section allow only a single write operation. WOM codes generally
support up to t write operations; however, because write-once bits are written one at a time, a
reader might be confused by seeing an incomplete code word. In Algorithm 3, we show how to
implement an atomic multi-bit write operation that can be used up to t times on an m-bit write-
once memory by a single writer process, at a cost of increasing the memory size to 2m + t. This
allows any WOM code to be used in a SWMR register if we are willing to accept doubling the space
requirement.

Each bit of the original register is implemented by two bits. A 00 pattern represents a 0 bit.
The 01 and 10 patterns are used to represent 1 bits for writes that are in progress. These are
eventually converted into 11 pattern to represent a 1 bit for a completed write.

A second array Done of t bits counts, in unary, the number of completed writes. Any 01
patterns are interpreted as 1 only when the number of 1 bits in Done is odd; similarly, any 10
patterns are interpreted as 1 only when the number of 1 bits in Done is even. This allows all new
1 bits corresponding to a write in progress to switch from being ignored by the reader to being
included atomically when the next bit in Done is set. To allow subsequent write operations to do
the same thing, the writer cleans up these partial bits by rewriting them as 11 on its way out.

It is still important for the reader to get a consistent snapshot of both arrays. We do this using
a standard double collect snapshot that returns only when two consecutive reads of the memory
return the same values. Because the values in the write-once memory increase monotonically, no
additional tagging is needed to avoid ABA issues.

Theorem 3.1. Assuming only one process ever invokes write operations, Algorithm 3 implements
an atomic multi-bit write.

Proof. Because there is only one writer, we can characterize the state of the A and Done arrays
exactly throughout the execution of the algorithm. Our induction hypothesis is that at the start
of the r-th iteration, every entry in A is either 00 or 11, and Done contains r − 1 ones in positions
1 through r− 1. During the execution of writeLocations in round r, the writer will add 01 or 10
into the given locations, and only set the Done[r] bit when all these values are written. The second
loop, converting all the intermediate values to 11, ensures that the induction hypothesis continues
to hold at the end of this write. We linearize the writeLocations operation at the time it writes
Done[r].

The double-collect snapshot ensures that each reader’s copies MyA and MyDone of A and Done
are equal to the value of A and Done at some time during its execution. We use this time as the read
operation’s linearization point. There are now several cases to consider for how this read interacts
with a possible concurrent write:

1. If there is no concurrent write, then output[i] = 1 for precisely those locations that hold 11
and 0 for those that hold 00 (there are no other possible values). These correspond to the
value provided in the arguments to preceding writeLocations operations.

6

1 procedure write(v)
2 Let i1, . . . , ik be the locations of the original WOM code that need to be set when

writing the value v;
3 writeLocations(i1, . . . , ik);
4 procedure writeLocations(i1, . . . , ik)
5 r ← r + 1;
6 for j ← 1 . . . k do
7 if r is odd then
8 A[ij]← 01;
9 else

10 A[ij]← 10;

11 Done[r]← 1;
12 for j ← 1 . . . k do
13 A[ij] = 11;

14 procedure read()
15 repeat
16 MyA← A;
17 MyDone← Done;
18 until two consecutive iterations produce the same values;
19 Let r be the largest index in MyDone such that MyDone[r] = 1;
20 foreach i in the index set of MyA do
21 if MyA[i] = 11 then
22 output[i]← 1;
23 else if MyA[i] = 01 and r is odd then
24 output[i]← 1;
25 else if MyA[i] = 10 and r is even then
26 output[i]← 1;
27 else
28 output[i]← 0;

29 return output;
Algorithm 3: Implementing an arbitrary WOM code using an atomic multi-bit write

2. If there is a concurrent write, and it has not yet set Done[r] at the time the read operation
reads it, then the read will set its own r to r− 1. This will have the opposite parity of the 01
or 10 values written by the concurrent write, so these values will be treated as 0. It follows
that the read will return whatever value was present at the start of the concurrent write,
which is consistent with the linearization ordering.

3. If there is a concurrent write, and it has set Done[r] before the read operation reads it, then
any 01 or 10 values that have not yet be cleaned up will be interpreted by the reader as ones.
In this case the reader will return the value present following the concurrent write, which is
again consistent with the linearization ordering.

7

4 Registers based on the tabular WOM code
Here we give a family of register implementations based on the tabular WOM code of Rivest et
al. [33]. These allow up to t writes of m-bit values. For the single-writer case (see §4.2), the
construction requires only (1 + o(1))t write-once bits provided t = ω(m2m), for an average of
1 + o(1) bits per write. For the multi-writer case (§4.3), it requires (2 + o(2))t bits under the same
conditions on t. In both cases the amortized time complexity of each operation is polynomial in n
and 2m, even for very large tables. An alternative implementation that sacrifices space for speed
will be given later in §5.

4.1 The tabular WOM code
The tabular WOM code represents 2m distinct values as an array of k rows of m+` bits each, where
k and ` are parameters selected to maximize the efficiency of the code. Each row A[i] consists of
an m-bit increment field A[i].increment, interpreted as an element of Z2m , together with an `-bit
unary counter A[i].count. A row is unused if all bits in the counter are 0, and full if all are 1. A
row that is neither unused nor full is active. The value stored in the array is given by(

k∑
i=1

A[i].increment ·A[i].count
)

mod 2m. (1)

To change the current value in A from x to y, the writer first checks for a used, non-full row
that already has an increment value equal to (y − x) mod 2m, and if so increments the counter in
that row by one by writing an additional 1 bit. If there is no such row, the writer selects an unused
row, writes (y − x) mod 2m to its increment field, and sets the count to 1 by writing a single one
bit to the counter field. This process continues until the writer can no longer find an unused row
when trying to write an increment that cannot be stored otherwise.

We would like to get the space needed for t write operations as close to t as possible. There are
two sources of space overhead that prevent this in the tabular WOM code. The first is that each
increment field adds m bits that must be amortized over the ` write operations handled by that row;
this gives 1 + o(1) overhead provided ` = ω(m). The second is that up to 2m− 1 rows may be only
partially used (if more than this are unused, we have rows available for all possible increments and
can perform any new write operation). This overhead also becomes 1 + o(1) provided k = ω(2m).
Setting both ` = ω(m) and k = ω(2m) gives t = ω(m2m) and a space complexity of (1 + o(1))t.

4.2 Single-writer implementation
The tabular WOM code has the useful property that as long as the writer writes A[i].increment in
a new row before setting any of the bits in A[i].count, the value stored in A changes atomically
at the moment that the writer sets a bit in A[i].count. This means that with a single writer, no
special effort is needed to ensure linearizability, and we can treat the linearization point of a write
operation as the moment it sets a bit in some count row.

On the other side, a read operation needs to obtain an atomic snapshot of the entire array to
be able to compute the sum of the entries as given in (1). This can be done in a straightforward
way using a double-collect snapshot, with some further optimizations possible by taking advantage
of predicting which bits could be written next. Note that even with a snapshot, it is possible that
a reader may observe an incomplete write of A[i].increment for some i. However, this can only
occur if the corresponding A[i].count is still 0. So a read operation always returns the sum of the
increments of all writes that linearize before it, giving correctness.

8

For t = ω(m2m), the average time complexity of a write is 1+o(1), though the cost of a specific
write may range from 1 to 1 +m, depending on whether it needs to set an increment field.

For read operations the cost may be much higher. Unlike the writer, a reader may need to
read the same bit more than once to see if it has changed. Indeed, a naive implementation of the
double-collect snapshot would force a reader to read all k (m+ `) bits at least twice during any read
operation, and again for each write that occurs during the read. We can reduce the amortized cost
by observing that the reader never needs to re-read a bit that is already 1, and by enforcing that
the writer use new rows and write count bits in a specified order. This means that each new write
might write to at most 2m distinct locations in the count fields: one for each active row, plus at
most one bit at the start of an unused row if the active rows do not span all 2m possible increments.
This reduces the cost imposed on each reader by a new write to at most 2m + m operations (2m

count bits plus at most one increment field). If we multiply this by n potential readers, this raises
the amortized cost of a write to O(n2m) bit operations, which is large but still independent of the
table size. Shifting costs to the writers in this way still leaves the reader with an amortized cost of
O(2m) to re-read zero bits to confirm that no new writes have occurred.

Pseudocode for an implementation that applies these optimizations is given in Algorithm 4.
The above discussion essentially proves the following.

Theorem 4.1. There is an algorithm that implements an n-process SWMR m-bit register support-
ing up to t writes, using space complexity of (1 + o(1))t when t = ω(m2m), and with amortized step
complexity O(n2m) for a write and O(2m) for a read.

4.3 Multi-writer extension
We can extend the single-writer construction to multiple writers using a construction of Israeli and
Shaham [25, §4]. This construction implements a multi-writer multi-reader (MWMR) register from
n single-writer multi-reader (SWMR) registers, one for each writer. Each MWMR write operation
requires O(n) SWMR read operations and 2 SWMR write operations. MWMR read operations
require only O(n) SWMR read operations. Each SWMR register must be large enough to store the
contents of the MWMR register, plus an addition 6 lgn+O(1) bits for pointers used to determine
the linearization order.

By implementing each SWMR register as in the preceding section, for sufficiently large t, each
writer process can carry out up to t writes at an amortized space complexity of 2 + o(1) bits per
write. However, both the bound on t to obtain this space complexity and the time complexity
of both read and write operations becomes quite large: t must be ω((m + logn)n62m) and the
amortized cost of both read and write operations rises to O(n22m). Whether one can retain low
per-write space complexity while getting low time complexity in a MWMR setting remains open.

A further annoyance is that the low amortized space complexity applies only when each writer
individually uses up its allotment of t = ω((m+logn)n62m) writes. While this might be a reasonable
assumption for some applications, in the worst case we can imagine a single writer using up its
allotment while the other writers do nothing, giving a per-write space complexity of Θ(n).

4.4 Allocating table rows from a common pool
We solve this problem by allocating table rows from a common pool. In this section we describe a
simple storage allocator, based on the safe-agreement objects of Borowsky et al. [10]. Our storage
allocator guarantees that all but n− 1 rows in a k-row array are assigned to some writer.

A safe-agreement object provides a weak version of consensus that guarantees agreement
and validity but not termination. Any process that accesses a safe-agreement object is guaranteed

9

shared data: Array A[0..r − 1] of rows, where each row A[i] has fields A[i].increment of m
write-once bits and A[i].count[0..`− 1] of ` write-once bits;

local data: Array next[0..2m − 1] where each entry holds either ⊥ or an 〈index, position〉
where index is an index into A and position is an index into A[index].count;

current, equal to the most recently computed value of the register;
Array MyA[0..r − 1] of rows, where each row MyA[i] has fields MyA[i].increment of m
write-once bits and MyA[i].count[0..`− 1] of ` write-once bits;

1 procedure write(v)
2 Let i = v − current (mod 2m);
3 if next[i] = ⊥ then
4 next[i]← 〈r, 0〉 where r is a newly-allocated row;
5 A[next[i].index].increment← i;
6 A[next[i].index].count[next[i].position]← 1;
7 if next[i].position = `− 1 then
8 next[i]← ⊥;
9 else

10 next[i].position = next[i].position + 1;
11 current← v;
12 procedure read()
13 repeat
14 foreach i such that MyA[i].count is not all 0 or all 1 do
15 copy(MyA[i].count,A[i].count);
16 Let i be the smallest index such that MyA[i].count is all 0;
17 if A[i].count[0] 6= 0 then
18 MyA[i].increment← A[i].increment;
19 copy(MyA[i].count,A[i].count);
20 until MyA is unchanged throughout an iteration;
21 return

∑r−1
i=0

(
MyA[i].increment ·

∑`−1
j=0 MyA[i].count[j]

)
(mod 2m) ;

// Helper procedure for read
// Copies bits to X from Y assuming Y contains no 0 to the left of a 1

22 procedure copy(X,Y)
23 Let j be the smallest index such that X[j] = 0;
24 while j < ` ∧ Y [j] = 1 do
25 X[j]← 1;
26 j ← j + 1;

Algorithm 4: Single-writer register implemented using a tabular WOM code

to obtain the id of a unique winner among the users of the object, provided no process halts during
a special unsafe segment of its execution; if some process does halt, the object never returns. This
means that, if we assign a safe-agreement object to control ownership of each of the k rows in our
pool, at most n− 1 rows will never be allocated, assuming at least one process continues to run.

Algorithm 5 shows how to implement a safe-agreement object using WOM. The mechanism is
essentially the same as in the original Borowksy et al. algorithm, except that we encode the values
0 as 000 when it represents the initial value and 011 when it represents the result of a back-off,
the value 1 as 001, and the value 2 as 101. The intuition is that a process first advances to level 1

10

// proposei(v)
1 A[i]← 001;
2 if snapshot(A) contains 101 for some j 6= i then

// Back off
3 A[i]← 011;
4 else

// Advance
5 A[i]← 101;

// safei

6 repeat
7 s← snapshot(A);
8 until s[j] does not equal 001 for any j;

// agreei

9 return the smallest index j with s[j] = 101;
Algorithm 5: Safe agreement (adapted from [10])

(001), then backs off if it detects another process already at level 2 (101). If a snapshot includes
no processes at level 1, it is safe for any process that sees that snapshot to agree on the smallest
process at level 2, because any later process will back off before reaching level 2. Termination is
also guaranteed as long as no process stays at level 1 forever.

To implement the storage allocator, we add a safe-agreement object to each row; this increases
the size of each row by 3n bits. We also include a dlgne-bit field to allow a reader to quickly
identify the owner of a row. Despite these additions, we still get 1 + o(1) amortized bits per write
by making ` = ω(m+ n).

To allocate a new row, a writer interleaves attempts to win the safe-agreement objects for the
next n rows for which it has not yet determined a winner. At least one of these safe-agreement
objects will eventually return a value. If this is the id of the writer, it can claim the row by writing
its id to the id field and proceed as in the single-writer construction. If not, it continues to attempt
to acquire a row from the set obtained by throwing in the next row that it has not previously
attempted to acquire. In either case the writer eventually acquires a row or reaches a state where
all but n− 1 rows have been allocated.

The reader’s task is largely unchanged from the basic MWMR construction: for each of the
n SWMR registers, there are at most 2m active rows it must check for updates, plus up to n
additional rows it must check for new activity. This again gives an amortized cost from the readers
of O(n2m) steps per write operation. In addition, each write operation may impose a cost of O(n)
bit operations from extra collects in the snapshot on each other writer, for a total of O(n2) bit
operations, for each row it attempts to allocate. This gives a total cost over all writes of O(kn3)
for an amortized cost of O(n3/`) = O(n2) per write. So the total amortized cost per write is
O(n(n+ 2m)). This gives:

Theorem 4.2. There is an algorithm that implements an n-process MWMR m-bit register that
supports up to t writes, using space complexity of (2 + o(1))t when t = ω((m + logn)n62m), and
with amortized step complexity O(n22m) for both write and read operations.

5 An unrestricted MWMR implemention based on max registers
The tabular WOM code constructions have two deficiencies: they have huge time complexity, and
they are limited-use, permitting only a fixed maximum number t of write operations. In this section,

11

we give a different construction (using unbounded space) that implements a wait-freem-bit MWMR
register on top of a max register [3]. A max register provides WriteMax and ReadMax operations,
where ReadMax returns the largest value written by any preceding WriteMax.

There are several known constructions of max registers [3, 4, 20], each of which has different
goals. The basic structure we use here follows the tree implementation of [3], described in §5.1 for
completeness. In §5.2 we construct our full MWMR m-bit register and prove its properties.

5.1 Tree-based max register
The standard tree-based max register is any binary tree whose leaves correspond to the possible
values of the max register. Each node represents a single-bit register that can hold a value in {0, 1}.
The aim is to have the current value of the tree be the rightmost leaf that is set to 1. To implement
this, a ReadMax operation travels down the tree starting from the root node, going to the left child
of a node if it reads 0 and going to the right child if it reads 1. A WriteMax(v) starts from the leaf
that corresponds to the value v, and travels up the tree to the root, setting to 1 all bits to which it
arrives from the right. An important technicality is that in order to make the above linearizable,
before a WriteMax makes any change to a left subtree of a node, it checks that the bit at this node
is 0. This allows, for example, implementing a b-bounded max register (supporting values in values
in {0, ..., b− 1}) using a balanced binary tree of depth O(log b).

However, we can also use an unbalanced binary tree with the property that each leaf v is at
depth O(log v). Since the step complexity of any operation is proportional to the depth of the leaf
it writes or returns, the latter gives an implementation with a step complexity of O(log v). This
implementation also has the nice property that it can be extended to support an unbounded number
of values. This is done by having a leaf at depth O(n) point to a multi-writer snapshot object. This
way the step complexity does not increase with the value v beyond limit, but is rather bounded
by O(min{log v, n}), since there are linear-time implementations of snapshot objects [6, 23]. The
problem with having the step complexity increase beyond limit is not only a complexity problem—it
is also a computational problem in the sense that the implementation is not wait-free if we keep
the tree infinite, since a ReadMax operation can always be pushed farther down to the right side of
the tree by a new WriteMax operation with a larger value.

Using WOM, the tree-based max register implementation has the nice property that only single-
bit registers are used and their value can only be changed from 0 to 1. However, we cannot use
the snapshot object that truncates the tree at depth O(n), because its known implementations do
not translate into the write-once model. Another approach that avoids the usage of the snapshot
object is the randomized helping mechanism used in [4]. But this also does not translate to WOM,
and hence we seek a different helping solution.

5.2 Adding the helping mechanism
For the sake of presentation, we start with describing an attempt for building a standard register out
of a tree-based max register. This most basic approach only gives a non-blocking SWMR register.
Then, we add a helping mechanism to obtain wait-freedom. This still only works for the case of a
single-writer-single-reader (SWSR) implementation. We then explain the challenges in extending
this to the multi-writer-multi-reader (MWMR) case. We keep the descriptions of the non-blocking
and wait-free SWMR registers informal for clarity, and leave the pseudocode and formal proof for
the presentation of our full MWMR construction with a more involved helping mechanism for all
processes.

12

5.2.1 A non-blocking SWSR write-once register

Suppose we have a single writing process pW , and a single reading process pR. We first describe
an implementation of a SWSR register that is non-blocking but not wait-free, in order to give
intuition for our framework.2 We maintain an infinite unbalanced tree-based unbounded max
register Max, and associate an m-bit register value(t) with each leaf t. The values of Max represent
timestamps and value(t) represents the value written in the t-th operation, as follows. On its t-th
write operation, pW writes its input value into value(t) and then executes a WriteMax(t) operation
on Max. Upon its read operation, pR performs ReadMax on Max and then reads and returns
value(t), where t is the timestamp returned from the ReadMax operation. The problem with this
implementation is that operations of pR are not wait-free because ReadMax may never return if pW

keeps invoking WriteMax operations and thus constantly pushes pR down the rightmost infinite
path of the tree.

5.2.2 A wait-free SWSR register

To make this implementation wait-free, we employ the following simple helping mechanism, which
consists of an infinite array of bits HelpReq and an infinite array HelpData where each location has
a 1-bit flag field and an unbounded register TS. When pR starts its read operation, it first starts
performing a ReadMax operation up to the first time at which it either returns the last value t it
saw in previous invocations of read (or 0 if this is its first), or it discovers that a larger value
was written. If t has not changed then pR returns the same value value(t) that it returned for
its previous read operation. Otherwise, pR writes 1 into HelpReq[k], where k is an integer that
increases by 1 every time that pR accesses HelpReq. Then, pR alternates between taking another
step in its ReadMax operation and reading HelpData[k].flag. The operation completes either when
pR reads 1 from HelpData[k].flag, in which case it reads t′ from HelpData[k].TS and returns value(t′),
or when the ReadMax operation finishes and returns t′, in which case pR reads and returns value(t′).

When pW performs its t-th write operation, it firsts writes its input v to value(t) and then
executes a WriteMax(t) operation on Max. Then, it checks whether pR needs help by reading
HelpReq[k], where k is greater by 1 compared with the last index at which pW accessed HelpReq,
and 0 if this is its first access. If HelpReq[k] is 1 then pW writes t into HelpData[k].TS and 1 into
HelpData[k].flag and returns.

The correctness of the wait-free SWSR register implementation described above is shown roughly
as follows. If a read operation by pR returns a value obtained by its embedded ReadMax operation,
then it is the last value written by a write operation of pW because of the correctness of Max.
If instead a read operation by pR returns a value obtained by finding a timestamp t in the cor-
responding HelpData[k].TS array, then we can linearize it immediately after the write operation
that wrote this timestamp because any write operation that accesses a location HelpData[k′].TS
with k′ > k does so with a timestamp t′ > t because the timestamps are strictly monotone.

The step complexity of the t-th write operation is O(log t+m), because pW needs O(log t) steps
for WriteMax(t) and for writing t into some location of HelpData, m steps for writing value(t), and a
single step for checking the current location in HelpReq. The latter is because if pR accesses HelpReq
then it must be because the value of Max changed since its last read operation, which means that
if pW executes a write operation then it only needs to check a single location in HelpReq. That
is, it cannot be that pR fills in many locations in HelpReq without pW finding them, because every

2For the purpose of obtaining only a non-blocking SWSR write-once register, it is sufficient to construct an infinite
array of m-bit locations to which the writer writes in increasing order and the reader searches for the last written
location. However, we use here a max-register based implementation in order to build upon it when constructing our
following wait-free SWSR and MWMR implementations.

13

accessed location by pR implies the invocation of another write operation. Notice that this does
not work if there are multiple readers because then pW has to access a different pair of HelpReq
and HelpData arrays for each reader who might need help.

The step complexity of a read operation that returns a value associated with timestamp t is also
O(log t+m), because pR needs O(log t) steps for the ReadMax operation that returns the previously
seen timestamp t′ < t or finds that it increased, a single step for updating the current location
HelpReq, O(log t) steps for reading HelpData, and m steps for reading value(t). The reason that
only O(log t) steps are needed for reading HelpData is because the TS field is read only once, and
the flag field is read at most a number of times as the number of steps of the ReadMax operation.
Notice that this does not work if there are multiple writers because then pR has to access a different
pair of HelpReq and HelpData arrays for each writer who might be the only one who can provide
help.

As explained above, this implementation does not extend to multiple writers or multiple readers.
Below, we use the preceding framework along with a slightly more involved helping mechanism in
order to allow for multiple writers and multiple readers.

5.2.3 A MWMR write-once register

In this section, we give the full MWMR register implementation. The main issues we have to handle
are the following. First, a writer needs to choose a new timestamp for its next operation, which
now depends on operations by other processes and cannot be generated locally. This is addressed
by having the writer do a read operation and increment the returned timestamp in order to get
its new timestamp. Notice that a ReadMax alone is insufficient because the writer may also need to
use the helping mechanism.

Second, a read operation (including the embedded read operations!) may need to get help
from one of the write operations, if its ReadMax operation does not finish. This is handled by
interleaving the ReadMax operation with the reader side of the helping mechanism, which consists
of signaling to all processes that help is needed and then cycling over an array according to the
possible processes and waiting for a current timestamp to be written there. Here, a good timestamp
t is one which the reader can safely adopt and return the value associated with it.

Third, a write operation may need to provide help for one of the read operations. To this
end, the WriteMax operation is interleaved with writing to the helping mechanism. This is done
by cycling over the array of all processes and checking whether any of them signaled for help. If
the operation sees a signal for help at the currently checked location, it does another ReadMax and
writes its timestamp as its helping data. Notice that the size of timestamp is unbounded, and in
particular it may be greater than the timestamp that the WriteMax used. This means that we
might not be able to afford writing the new timestamp without having a complexity that depends
on the number of operations also for a write operation. To solve this, it may be the case that
a write operation begins writing a certain timestamp as its helping data, but writing this value
continues only in the next write operation invoked by this process. In fact, it may be that writing
a timestamp for helping is spanned over multiple write operations of the process.

Below, we give the pseudocode of our algorithm and its analysis. The main max register we
use is similar to the one from [4], but is slightly modified as follows. It is built as a binary tree of
switch bits, which consists of an infinite spine forming the rightmost path through the tree, each
node of which has a balanced m`-valued max register (of depth O(logm`)), rooted at its left child.
Here we take m` to be 2`. We denote the m`-valued max registers as M`, where ` = 0, 1, . . . is an
increasing integer starting from the root.

When a write operation needs to write a value associated with timestamp t, it sets the relevant
bits of the max register M` from leaf t up to the spine, and then from the spine to the root only

14

until the previously set bit there. The fact that we do not have to go all the way up to the root
is because there is no need to set bits that are already set, and hence this modification does not
affect correctness. It will, however, allow us to save time, as in [4].

1 Shared data:
2 Max: an unbounded max register.
3 value(t): an m-bit register for every integer t.
4 HelpReq[i, j, t]: an infinite array of bits for each i, j ∈ [n].
5 HelpData[i, j, t]: an infinite array for each i, j ∈ [n].
6 HelpData[i, j, t].flag is a single bit.
7 HelpData[i, j, t].TS is an unbounded register.
8
9 Local data:

10 helpFrom: a process ID.
11 helpTo: a process ID.
12 loc(helpTo): an array of n integers.
13
14 procedure write(v)
15 Alternate between steps of WriteMain(v) and WriteHelp until the former finishes.
16
17 procedure WriteMain(v)
18 (t′,−)← read
19 t← ((bt′/nc+ 1) · n) + pid
20 value(t)← v

21 WriteMax(Mdlog te, t− 2blog tc) // Write to the corresponding m`-valued max register
22 for s = dlog te to blog tc do
23 spine[s]← 1

24 procedure WriteHelp
25 helpTo← helpTo+ 1 mod n
26 if HelpReq[helpTo, pid, loc(helpTo)] == 1 then
27 (t′′,−)← read
28 HelpData[helpTo, pid, loc(helpTo)]← t′′ // this may take many steps, possibly spread

across multiple main-algorithm writes
29 loc(helpTo)← loc(helpTo) + 1

Algorithm 6: Implementation of operation write for a write-once register using an unbounded
tree-based max register and a helping mechanism.

Our main result for this section is the following.

Theorem 5.1. There is an algorithm that implements an n-process MWMR register of m bits with
unbounded space, where the amortized step complexity of a write operation that gets associated with
a timestamp t is O(log t+m+ logn) and the step complexity of a read operation that reads a value
associated with a timestamp t is O(log t+m+ logn).

Proof. We linearize a write operation at the first time in which all the switches on the path of the
max register tree from the root to the timestamp t used by the operation are set.

We linearize a read operation that returns with the pair (t,−) immediately after the write
operation that used timestamp t is linearlized. This is well-defined for returning in the ReadMain

15

1 procedure read
2 Alternate between steps of ReadMain and ReadHelp until one of them finishes.
3
4 procedure ReadMain
5 t← ReadMax(spineLoc)
6 v ← value(t)
7 return (t, v)
8
9 procedure ReadHelp

10 if h > 0 then
11 for helpFrom = 0, .., n− 1 do
12 HelpReq[pid, helpFrom, h− 1]← 1
13 for helpFrom = 0, .., n− 1 do
14 HelpReq[pid, helpFrom, h]← 1

15 while helped == false do
16 helpFrom← helpFrom+ 1 mod n
17 if HelpData[pid, helpFrom, h].flag == 1 then
18 t← HelpData[pid, helpFrom, h].TS
19 helped← true

20 helped← false
21 h← h+ 1
22 v ← value(t)
23 return (t, v)
Algorithm 7: Implementation of operation read for a write-once register using an unbounded
tree-based max register and a helping mechanism.

part because (a) there must be such a write operation because of the correctness of the max reg-
ister construction, and (b) there can be only one such operation because each process is allocated
a separate set of timestamps and uses them in a strictly increasing manner. We linearize a read
operation that returns in its ReadHelp part with the pair (t,−) immediately after the write oper-
ation that used timestamp t is linearlized. This is also well-defined for returning in the ReadHelp
part by an induction on the linearization order: an operation that updates its HelpData with the
timestamp t does so only after reading that value by a read operation.

It is easy to see that the linearization is consistent with the order of non-overlapping operations,
because timestamps of write operations can only increase and read operations always start reading
ReadMain from the last location spineLoc that an operation by the same process saw for the max
register.

Next, we need to show that if a read operation op returns a value associated with a timestamp t
then this timestamp is the largest among all write operations that are linearized before op. First, it
must be the case that some write operation with timestamp t is linearized before op, by definition
of the linearization points, and because a value can only be written to the HelpData array if it was
previously read from the max register. Second, we need to show that there cannot be a write
operation op′ with timestamp t′ > t is linearized before op. Suppose that this is not the case, and
let op be the first read operation for which there is a write operation op′ with a larger timestamp
that is linearized before it. Let t be the timestamp of op and let t′ > t be the timestamp of op′.

16

correctness of the max register construction, it cannot be the case the op returns from the ReadMain
part while being linearized after a WriteMain operation with a larger timestamp. Hence, op returns
from ReadHelp. This implies that it is linearized after the read operation op′′ embedded in the
write that helps it, which contradicts it being the first such read operation.

It remains to analyze the step complexity of the algorithm. A read operation requires m steps
for reading value(t) and at most O(log t+ logn) steps for reading the max register in the ReadMain
part, where t · n+ pid is the timestamp returned, regardless of which part it returns from. This is
because the max register construction requires a number of steps that is logarithmic in the value
written, and because the ReadHelp part can only double the number of steps performed by the
ReadMain operation.

A write operation associated with a timestamp t · n+ pid requires m steps for writing value(t)
and at most O(log t+logn) steps for reading the max register (which returns a smaller timestamp).
This is because the leaf t is in depth O(log t) . The last issue we need to address is the WriteHelp
part. Though it can only double the number of steps performed by the WriteMain operation, the
problem is that to allow the helping mechanism to be correct, the write operation has to perform
another embedded read operation whose value it uses for the helping mechanism, and the returned
timestamp t′ of this operation may be much larger than t.

However, an important property that the above construction satisfies is that the step complexity
of a write operation that uses timestamp t is only O(log t + m + logn), when amortized over all
write operations. The reason for this is that although a write operation may perform an embedded
read operation whose complexity depends on the value t′ that is associated with it, this complexity
can be accounted for O(t′/n) different write operations, because the implementation satisfies the
n-bounded increments property [4]. This property states that a value (timestamp in our context)
written to the max register by an operation op is at most 2n − 1 larger than the value of latest
completed write operation. This implies that a timestamp of t′ can be reached only after at least
t′/n write operations have been invoked.

6 Lower bounds
For any implementation of a standard register from write-once memory, it is trivial to see that we
must use an infinite amount of space in order to support an unbounded number of write operations.
This holds even without concurrency, because a finite number of bits can encode a finite number
of values, and because we cannot reset a 1 bit to 0. In this section, we provide two additional,
non-trivial, lower bounds.

The first is an Ω(log t) lower bound on the worst-case cost of a read operation in an execution
with t write operations, even when implementing a one-bit register. This is an immediate conse-
quence of Kraft’s inequality [27]. Consider a family of executions Ξ0,Ξ1, . . .Ξt, in which a single
writer process alternates between writing a 0 value and a 1 value, with i writes in Ξi. In each
execution, following these writes is a second reader process p that executes read.

Assume that the reader is deterministic. Let xi be the sequence of bits read by p in Ξi. Observe
that the xi form a prefix-free code (where no codeword is a prefix of another), because the reader
chooses to stop deterministically based on the bits it has read so far. Observe further that because
write-once bits can never switch from 1 to 0, the xi can only increase in lexicographic order: in
particular this means they are all distinct. Kraft’s inequality [27] then gives that

∑t
i=0 2−|xi| ≤ 1,

implying that at least one (and indeed most) of the xi have length Ω(log t).
By treating a randomized reader as a mixture of deterministic readers, the same result applies

to the expected worst-case cost of a read. Note that this holds even with an oblivious adversary,
because the argument depends only on the information-theoretic properties of the possible sequences

17

of bits observed by a reader, and not on any interaction between the reader and the schedule.
The previous lower bound assumes that the reader performs only one read operation. A reader

that performs multiple reads may be able to save work by avoiding re-reading bits that it already
knows to be 1. However, we can still show a second lower bound that is a trade-off between the
number of bits written by a write operation that writes an m-bit value and the number of bits
a read operation op has to look at to get new value, even if it observed the contents of memory
immediately before the write.

Suppose that the read operation accesses at most r bits, and the write operation sets at most
k bits. As in the previous bound we can consider each possible sequences of bits x0, . . . x2m−1 read
by the reader, where xi gives the sequence corresponding to the value i. Each such sequence is
distinct, has length at most r and contains at most k ones, so we have

∑k
i=1

(r
i

)
≥ 2m. For k = 1,

this bound is reached (up to constants) by the construction of §4. It is an interesting question
whether the trade-off can be realized in general for larger k.

7 Discussion
The present work initiates the study of write-once memory in a concurrent setting. Our results
demonstrate that it is in principle possible to implement operations for standard, rewritable shared-
memory using write-once memory with low space overhead and polynomial amortized time com-
plexity. Several open questions remain:

1. Is it possible to combine low space overhead with low time overhead?

2. To what extent could a small amount of rewritable shared memory allow more efficiency in
use of write-once shared memory?

3. What can one say about stronger write-once primitives, such as (non-resettable) test-and-set
bits, either as a target or a base object for implementations?

References
[1] Zahra Aghazadeh and Philipp Woelfel. On the time and space complexity of ABA preven-

tion and detection. In Proceedings of the 2015 ACM Symposium on Principles of Distributed
Computing, PODC 2015, Donostia-San Sebastián, Spain, July 21 - 23, 2015, pages 193–202,
2015.

[2] Dan Alistarh and James Aspnes. Sub-logarithmic test-and-set against a weak adversary. In
Distributed Computing - 25th International Symposium, DISC 2011, Rome, Italy, September
20-22, 2011. Proceedings, pages 97–109, 2011.

[3] James Aspnes, Hagit Attiya, and Keren Censor-Hillel. Polylogarithmic concurrent data struc-
tures from monotone circuits. J. ACM, 59(1):2, 2012.

[4] James Aspnes and Keren Censor-Hillel. Atomic snapshots in O(log3 n) steps using randomized
helping. In Distributed Computing - 27th International Symposium, DISC 2013, Jerusalem,
Israel, October 14-18, 2013. Proceedings, pages 254–268, 2013.

[5] James Aspnes and Faith Ellen. Tight bounds for adopt-commit objects. Theory Comput. Syst.,
55(3):451–474, 2014.

18

[6] Hagit Attiya and Arie Fouren. Adaptive and efficient algorithms for lattice agreement and
renaming. SIAM J. Comput., 31(2):642–664, 2001.

[7] Hagit Attiya and Jennifer Welch. Distributed Computing: Fundamentals, Simulations and
Advanced Topics (2nd edition). John Wiley Interscience, March 2004.

[8] Mahesh Balakrishnan, Dahlia Malkhi, John D. Davis, Vijayan Prabhakaran, Michael Wei, and
Ted Wobber. Corfu: A distributed shared log. ACM Trans. Comput. Syst., 31(4):10:1–10:24,
December 2013.

[9] Aman Bhatia, Aravind Iyengar, and Paul H. Siegel. Multilevel 2-cell t-write codes. In IEEE
Information Theory Workshop (ITW), 2012.

[10] Elizabeth Borowsky, Eli Gafni, Nancy A. Lynch, and Sergio Rajsbaum. The BG distributed
simulation algorithm. Distributed Computing, 14(3):127–146, 2001.

[11] David Burshtein and Alona Strugatski. Polar write once memory codes. IEEE Transactions
on Information Theory, 59(8):5088–5101, 2013.

[12] Yuval Cassuto and Eitan Yaakobi. Short (Q)-ary fixed-rate WOM codes for guaranteed
rewrites and with hot/cold write differentiation. IEEE Transactions on Information Theory,
60(7):3942–3958, July 2014.

[13] Gérard D. Cohen, Philippe Godlewski, and Frans Merkx. Linear binary code for write-once
memories. IEEE Transactions on Information Theory, 32(5):697–700, 1986.

[14] Eyal En Gad, Huang Wentao, Yue Li, and Jehoshua Bruck. Rewriting flash memories by
message passing. In IEEE International Symposium on Information Theory (ISIT), 2015.

[15] Amos Fiat and Adi Shamir. Generalized ‘write-once’ memories. IEEE Transactions on Infor-
mation Theory, 30(3):470–479, 1984.

[16] Fang-Wei Fu and A. J. Han Vinck. On the capacity of generalized write-once memory with
state transitions described by an arbitrary directed acyclic graph. IEEE Transactions on
Information Theory, 45(1):308–313, 1999.

[17] George Giakkoupis and Philipp Woelfel. On the time and space complexity of randomized test-
and-set. In ACM Symposium on Principles of Distributed Computing, PODC ’12, Funchal,
Madeira, Portugal, July 16-18, 2012, pages 19–28, 2012.

[18] Philippe Godlewski. WOM-codes construits à partir des codes de Hamming. Discrete Mathe-
matics, 65(3):237–243, 1987.

[19] Chris Heegard. On the capacity of permanent memory. IEEE Transactions on Information
Theory, 31(1):34–41, 1985.

[20] Maryam Helmi, Lisa Higham, and Philipp Woelfel. Strongly linearizable implementations:
possibilities and impossibilities. In ACM Symposium on Principles of Distributed Computing,
PODC ’12, Funchal, Madeira, Portugal, July 16-18, 2012, pages 385–394, 2012.

[21] Maurice Herlihy and Nir Shavit. The art of multiprocessor programming. Morgan Kaufmann,
2008.

[22] Maurice Herlihy and Jeannette M. Wing. Linearizability: A correctness condition for concur-
rent objects. ACM Trans. Program. Lang. Syst., 12(3):463–492, 1990.

19

[23] Michiko Inoue and Wei Chen. Linear-time snapshot using multi-writer multi-reader regis-
ters. In Distributed Algorithms, 8th International Workshop, WDAG ’94, Terschelling, The
Netherlands, September 29 - October 1, 1994, Proceedings, pages 130–140, 1994.

[24] Amos Israeli and Amnon Shaham. Optimal multi-writer multi-reader atomic register. In
Proceedings of the Eleventh Annual ACM Symposium on Principles of Distributed Computing,
PODC ’92, pages 71–82, New York, NY, USA, 1992. ACM.

[25] Amos Israeli and Amnon Shaham. Time and space optimal implementations of atomic multi-
writer register. Information and Computation, 200(1):62 – 106, 2005.

[26] Adam N. Jacobvitz, Robert Calderbank, and Daniel J. Sorin. Coset coding to extend the
lifetime of memory. In IEEE 19th International Symposium on High Performance Computer
Architecture (HPCA), 2013.

[27] Leon G. Kraft. A device for quantizing, grouping, and coding amplitude-modulated pulses.
M.S. Thesis, Massachusetts Institute of Technology. Dept. of Electrical Engineering, 1949.

[28] Leslie Lamport. On interprocess communication. part I: basic formalism. Distributed Com-
puting, 1(2):77–85, 1986.

[29] Leslie Lamport. On interprocess communication. part II: algorithms. Distributed Computing,
1(2):86–101, 1986.

[30] Jiayin Li and Kartik Mohanram. Write-once-memory-code phase change memory. In Design,
Automation and Test in Europe Conference and Exhibition (DATE), 2014.

[31] Fabio Margaglia and André Brinkmann. Improving MLC flash performance and endurance
with extended P/E cycles. In IEEE 31st Symposium on Mass Storage Systems and Technologies
(MSST), 2015.

[32] Serge A. Plotkin. Sticky bits and universality of consensus. In Proceedings of the Eighth
Annual ACM Symposium on Principles of Distributed Computing, PODC ’89, pages 159–175,
New York, NY, USA, 1989. ACM.

[33] Ronald R. Rivest and Adi Shamir. How to reuse a “write-once” memory. Information and
Control, 55:1–19, 1982.

[34] Amir Shpilka. New constructions of WOM codes using the Wozencraft Ensemble. IEEE
Transactions on Information Theory, 59(7):4520–4529, 2013.

[35] Amir Shpilka. Capacity achieving multiwrite WOM codes. IEEE Transactions on Information
Theory, 60(3):1481–1487, 2014.

[36] Jack K. Wolf, Aaron D. Wyner, Jacob Ziv, and Janos Korner. Coding for a write-once memory.
AT&T Bell Laboratories Technical Journal, 63(6):1089–1112, 1984.

[37] Yunnan Wu. Low complexity codes for writing a write-once memory twice. In IEEE Interna-
tional Symposium on Information Theory (ISIT), 2010.

[38] Yunnan Wu and Anxiao Jiang. Position modulation code for rewriting write-once memories.
IEEE Transactions on Information Theory, 57(6):3692–3697, 2011.

[39] Eitan Yaakobi, Scott Kayser, Paul H. Siegel, Alexander Vardy, and Jack K. Wolf. Codes for
write-once memories. IEEE Transactions on Information Theory, 58(9):5985–5999, 2012.

20

[40] Eitan Yaakobi and Amir Shpilka. High sum-rate three-write and non-binary WOM codes. In
IEEE International Symposium on Information Theory (ISIT), 2012.

[41] Gala Yadgar, Eitan Yaakobi, and Assaf Schuster. Write once, get 50% free: Saving SSD
erase costs using WOM codes. In 13th USENIX Conference on File and Storage Technologies
(FAST), 2015.

[42] XianWei Zhang, Le Jang, Youao Zhang, Chuanjun Zhang, and Jun Yang. WoM-SET: Low
power proactive-SET-based PCM write using WoM code. In IEEE International Symposium
on Low Power Electronics and Design (ISLPED), 2013.

21

