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Abstract
We consider a variant of the well-studied gossip-based model of communication for disseminating
information in a network, usually represented by a graph. Classically, in each time unit, every
node u is allowed to contact a single random neighbor v. If u knows the data (rumor) to be
disseminated, node v learns it (known as push) and if node v knows the rumor, u learns it
(known as pull). While in the classic gossip model, each node is only allowed to contact a single
neighbor in each time unit, each node can possibly be contacted by many neighboring nodes. If,
for example, several nodes pull from the same common neighbor v, v manages to inform all these
nodes in a single time unit.

In the present paper, we consider a restricted model where at each node only one incoming
request can be served in one time unit. As long as only a single piece of information needs to be
disseminated, this does not make a difference for push requests. It however has a significant effect
on pull requests. If several nodes try to pull the information from the same common neighbor,
only one of the requests can be served. In the paper, we therefore concentrate on this weaker
pull version, which we call restricted pull.

We distinguish two versions of the restricted pull protocol depending on whether the request
to be served among a set of pull requests at a given node is chosen adversarially or uniformly
at random. As a first result, we prove an exponential separation between the two variants. We
show that there are instances where if an adversary picks the request to be served, the restricted
pull protocol requires a polynomial number of rounds whereas if the winning request is chosen
uniformly at random, the restricted pull protocol only requires a polylogarithmic number of
rounds to inform the whole network. Further, as the main technical contribution, we show that
if the request to be served is chosen randomly, the slowdown of using restricted pull versus using
the classic pull protocol can w.h.p. be upper bounded by O(∆/δ · logn), where ∆ and δ are the
largest and smallest degree of the network.
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1 Introduction

Gossip-based communication models have received a lot of attention as a simple, fault-
tolerant, and in particular also scalable way to communicate and disseminate information in
large networks. The classic application of gossip-based network protocols is the spreading
of information in the network, specifically the problem of broadcasting a single piece of
information to all nodes of a network, in this context also often known as rumor spreading,
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e.g., [6, 8, 10, 5, 12, 16]. On top of this, gossip-based protocols have for example also been
proposed for applications such as maintaining consistency in a distributed database [6], for
data aggregation problems [17, 18, 4], or even to run arbitrary distributed computations [2].

The best studied gossip strategy is the random phone call model, which was first considered
in [10]. We are given a network graph G = (V,E) where initially a source node s ∈ V

knows some piece of information (rumor) and the objective is to disseminate the rumor to
all nodes of G. Typically, time is divided into synchronized rounds, where in each round,
every node can contact a random neighbor and if u contacts v, an interaction between u and
v is initiated for the current round. For spreading a rumor, two basic modes of operation
are distinguished. Nodes that already know the rumor can PUSH the information to the
randomly chosen neighbor [10] or nodes that do not yet know the rumor can PULL the
information from the randomly chosen neighbor [6]. In much of the classic work, the network
G is assumed to be a complete graph. In that case, it is not hard to see that PUSH and
PULL both succeed in O(logn) rounds and that the total number of interactions of each
node can also be bounded by O(logn). In [16], it is shown that when combining PUSH and
PULL (in the following referred to as PUSH-PULL), the average number of interactions
per node is only Θ(log logn).

Mostly in recent years, PUSH, PULL, and PUSH-PULL have also been studied for
more general network topologies, e.g., [3, 8, 9, 5, 12, 11, 13], with [5, 12] and [11, 13]
studying the time complexity as a function of the graph’s conductance and vertex expansion,
respectively. E.g., in [12], it is shown that with high probability (w.h.p.), the running time of
PUSH-PULL can be upper bounded by O((logn)/φ(G)), where n is the number of nodes
and φ(G) is the conductance of the network graph G.

While in gossip protocols, each node can initiate at most one interaction with some
neighbor, even if each node contacts a uniformly random neighbor, the number of interactions
a node needs to participate in each round can be quite large. In complete graphs and more
generally in regular graphs, the total number of interactions per node and round can easily be
upper bounded by O(logn). However in general topologies a single node might be contacted
by up to Θ(n) neighboring nodes. As an extreme case, consider a star network where a single
center node is connected to n− 1 leaf nodes. Even if the rumor initially starts at a leaf node,
PUSH-PULL manages to disseminate the rumor to all nodes in only 2 rounds. Clearly, in
these 2 rounds, the center node has to interact with all n− 1 leaf nodes. In fact, all recent
papers which study the time complexity of the random PUSH-PULL protocol critically rely
on the fact that a node can be contacted by many nodes in a single round, e.g., [12]. In
some cases, this behavior might limit the implementability and thus the applicability of the
proven results for this gossip protocol. In order to obtain scalable systems, ideally, we would
like to not only limit the number of interactions each node initiates, but also the number of
interactions each node participates in.

In the present paper, we therefore study a weaker variant of the described random gossip
algorithms. In each round, every node can still initiate a connection to one uniformly
random neighbor. However, if a single node receives several connection requests, only one of
these connections is actually established. When disseminating a rumor by using the PUSH
protocol, this restriction does not limit the progress of the algorithm. In a given round, a
node v learns the rumor if and only if at least one PUSH request arrives at v. However, when
using the PULL protocol, the restriction can have a drastic effect. If a node v receives several
PULL requests from several nodes that still need to learn the rumor, only one of these nodes
can actually learn the rumor in the current round. In our paper, we therefore concentrate
on the PULL protocol and we define RPULL (restricted PULL) as the described weak
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variant of the PULL algorithm: In each RPULL round, every node that still needs to learn
the rumor contacts a random neighbor. At every node that knows the rumor, one of the
incoming requests (if there are any) is selected and the rumor is sent to the corresponding
neighbor. By PUSH-RPULL we denote the combination of RPULL with a simultaneous
execution of the classic PUSH protocol.

Contributions

We first consider two versions of the RPULL protocol which differ in the way how one of
the incoming requests is selected. Assume that in a given round some informed node v
receives RPULL requests from a set of neighbors Rv. In the adversarial RPULL protocol,
an (adaptive) adversary picks some node u ∈ Rv which will then learn the rumor. In the
random RPULL protocol, we assume that a uniformly random node u ∈ Rv learns the
rumor (chosen independently for different nodes and rounds). While the choice of which
neighbor a node (actively) contacts with a request is under the control of the protocol, it is
not necessarily clear how one of the incoming requests in Rv is chosen. If the node can only
answer one request per time unit and the requests do not arrive at exactly the same time, the
first request might be served and all others dropped. Or even if requests arrive at the same
time, it might be the underlying network infrastructure or operating system which picks one
request and drops the others. If it is reasonable to assume that the incoming requests are
served probabilistically and independently, we believe that random RPULL provides a good
model. Otherwise, the adversarial assumption allows to study the worst-case behavior.

As a first result, we prove that the running times of the two RPULL variants are
essentially the same on trees. Secondly, we show that there are instances for which there
is an exponential gap between the running times of the two RPULL variants. We give an
instance where for every source node the random RPULL protocol informs all nodes of the
network in polylogarithmic time, w.h.p., whereas, for every source, the adversarial RPULL
algorithm requires time Ω(

√
n) to even succeed with a constant probability.

In the second part of the paper, we have a closer look at the performance of the random
RPULL protocol. Consider a graph G and let δ and ∆ denote the smallest and largest
degree of G. In each round, in expectation, each informed node receives at most ∆/δ requests.
Hence, if an uninformed node u sends an RPULL request to an informed node, u should
receive the rumor with probability at least Ω(δ/∆). Consequently, intuitively, the slowdown
of using random RPULL instead of the usual PULL protocol should not be more than
Õ(∆/δ). 1 We prove that this intuition is correct. For every given instance, we show that
if the PULL algorithm informs all nodes in T rounds with probability p, for the same
instance, the random RPULL algorithm manages to reach all nodes in time O

(
T · ∆

δ · logn
)

with probability (1 − o(1))p.2 While the statement might seem very intuitive, its formal
proof turns out quite involved. Formally, we prove a stronger statement and show that
a single round of the PULL protocol is w.h.p. stochastically dominated by O

(∆
δ · logn

)
rounds of random RPULL in the following sense. We give a coupling between the random
processes defined by PULL and random RPULL such that for every start configuration,
w.h.p., the set of nodes informed after O

(∆
δ · logn

)
rounds of random RPULL is a superset

of the set of nodes informed in a single PULL round. The same holds for simulating one
round of PUSH-PULL with PUSH-RPULL. A similar coupling between rumor spreading

1 Here Õ hides log(n) factors.
2 Actually, ∆

δ can be replaced by max{u,v}∈E d(u)/d(v) in all parts of the paper, where d(u) and d(v)
denote the degrees of the nodes.
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algorithms has been done in [1] where the authors couple log(n) rounds of asynchronous-
with one round of synchronous PUSH-PULL. A coupling between PULL and RPULL in
the classic sense, i.e., a coupling which does relinquish the w.h.p. term does not exist. We
also show that for such a round-by-round analysis, our bound is tight. That is, there are
configurations where Ω

(∆
δ logn

)
random RPULL rounds are needed to dominate a single

PULL round with high probability.

Notation and Preliminaries

Let G = (V,E) be the n-node network graph. For a node u ∈ V , we use N(u) to denote the
set of neighbors of u and d(u) := |N(u)| to denote its degree. Given a set of nodes S ⊆ V ,
we define NS(u) := N(u) ∩ S to be the set of u’s neighbors in S and dS(u) := |NS(u)| for
the number of neighbors of u in S. The smallest and largest degrees of G are denoted by δ
and ∆, respectively. For a set V ′ ⊆ V we denote with G[V ′] the graph induced by V ′. To
indicate a disjoint union of two sets, i.e., A ∪B with A ∩B = ∅, we write A ·∪B. For a set of
natural numbers {1, . . . , k} we only write [k].

When analyzing the progress of an algorithm ALG, the set SALG
t denotes the set of

informed nodes after t rounds and UALG
t the set of uninformed nodes. When the algorithm

is clear from the context we simply write St and Ut, furthermore we denote S = S0 and
U = U0 for the initial configuration.

2 Separation of Adversarial and Random RPULL

We want to show that the adversarial RPULL can be exponentially slower than the ran-
domized RPULL on general graphs. To show this, we first establish results on the run time
of both algorithms on trees. These results might also be of independent interest.

In a tree network let pv,u = (v = v0, v1, v2, . . . , vq = u) denote the unique path
from v to u, though we use that notation also for the set of nodes on that path, i.e.,
pv,u = {v, v1, v2, . . . , vq−1, u}. For a path p, let Mp :=

∑
w∈p d(w) be the sum of all degrees

on the path.
The next lemma shows that on a tree any form of RPULL is asymptotically as fast as

PULL plus an additive term in the order of the degree of the node that initially has the
rumor.

I Lemma 1. Let G be a tree network with S0 = {r} and let u be a node in U0. Furthermore,
let τ be the first round in which u ∈ Sτ holds, i.e., the number of rounds until u gets informed.
(1) E[τ ] = Θ(Mpr,u − d(r)) for PULL,
(2) E[τ ] = Ω(Mpr,u − d(r)) for every type of RPULL,
(3) E[τ ] = O(Mpr,u) for adversarial RPULL.

Proof of Lemma 1. (1) We root the tree at the only informed node, r. Note that nodes are
not aware of their own parent/child relationships. Consider some time t at which a node
r′ on the path pr,u is in St \ St−1, i.e., it just got informed. Thus its child u′ ∈ pr,u on the
path is not yet informed, i.e., u′ ∈ Ut. In any round t′ ≥ t, in which u′ is not informed yet,
it requests its parent with probability 1/d(u′). Thus each uninformed node u′ ∈ pr,u \ {r}
on the path needs Θ(d(u′)) rounds in expectation before it can get informed. Linearity of
expectation proves the claim for PULL.

(2) follows from the fact that RPULL is at most as fast as PULL.
(3) For adversarial RPULL divide all rounds t′ ≥ t in which u′ is not yet informed into

two types: First rounds in which at least one sibling of u′, i.e., the nodes in N(r′)\{u′},
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requests from r′ and secondly rounds in which no sibling of u′ requests from r′. The first
type of rounds is upper bounded by d(r′) because every neighbor of r′ stops requesting after
receiving the rumor. In expectation u′ gets the rumor after d(u′) rounds of type two; thus in
expectation u′ is informed within O(d(r′) + d(u′)) rounds. Applying this recursively to all
uninformed nodes on the path pr,u, we get the claimed result via linearity of expectation. J

I Lemma 2. Let G be a tree network with S0 = {r}. Then in both random and adversarial
RPULL it takes O

(
maxpath pMp + ∆ logn

)
rounds to fully inform all nodes in V , w.h.p..

Proof Sketch. The full proof appears in Appendix C. Let u be an uninformed node with
informed parent v. In each round v either informs one child other than u or u has a probability
of 1/d(u) to get the rumor. In expectation for each predecessor-successor pair (v, u) on a
path p the time for u to get informed is at most d(v) + d(u). A Chernoff bound for geometric
random variables (Appendix C, Lemma 20) provides the time bound of O(Mp + ∆ logn) for
that path and a union bound over all paths concludes the proof. J

Lemma 2 shows that random RPULL and adversarial RPULL are essentially the same
on trees. This does not hold for general graphs.

I Lemma 3. There is a graph G = (V,E) of size Θ(n) with node rα ∈ V , d(rα) ≤ 3, s.t.:
For S0 = {rα}, w.c.p., the run-time of adversarial RPULL is in Ω(

√
n).

For any non-empty S0 ⊂ V , w.h.p., the run-time of randomized RPULL is in O(log2 n).

Proof Sketch. The full proof appears in Appendix C and a figure for visualization appears
in Appendix A. We first introduce a special graph type that we call a k-leaf-connected tree
(k-LCT). In simple words, a k-LCT is a binary tree with k leaves, but with its k leaves being
fully interconnected, i.e., forming a clique. Propagation of the rumor from one node to all
nodes of a k-LCT, happens in O(log k). This also holds true if we embed this k-LCT into a
larger graph, as long as the degrees do not grow much in this manner. As long as the k-LCT
is uninformed most requests of the leaves will target other leaf nodes, hence it is unlikely for
a k-LCT to acquire the rumor through its leaves.

We construct G as follows: We let Dα and Dζ be two n-LCTs, and we have m

l-LCTs that we denote with D1, D2, . . . , Dm, where l :=
√
n and m := c

√
n for some

c > 1. Their corresponding roots and leaf sets are denoted as rα, rζ , r1, r2, . . . rm and
Lα, Lζ , L1, L2, . . . Lm respectively, and with lX,1, lX,2, . . . we enumerate the leaves of leaf set
LX . Let Cα = {c1, . . . cm} be an arbitrary m-sized subset of Dα \ Lα and add the following
edges:

Between r and Dζ : We add one edge from r to rζ .
Between r and Dα: For each j ∈ [m logn] we add an edge from r to lα,j .
Between r and D1, . . . , Dm: For each i ∈ [m], j ∈ [logn] we add an edge from r to li,j .
Between D1, . . . , Dm and Dζ : For each i ∈ [m] we add an edge from ri to lζ,i.
Between D1, . . . , Dm and Cα: For each i ∈ [m] we add an edge from li,l to ci.

The idea of the proof is the following: The graph is built in a way that information propagation
from Dζ to the rest of the graph is quick, but not the other way round. In the random
RPULL model, wherever the rumor starts, it reaches r quickly and from there rζ manages
to pull in polylogarithmic time. Then the rumor quickly propagates through Dζ , and from
Lζ to all LCTs D1, . . . , Dm and afterwards to Dα.

In the adversarial RPULL model, as long as the rumor starts outside Dζ , the rumor
can quickly spread to r, Dα and a few of the Dis (i.e., the LCTs D1, . . . , Dm). But then
we let the adversary always prioritize a request at node r from a node in one of the Dis
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over a request from rζ to prevent that rζ gets the rumor. We can show that the number of
informed Dis grows slowly and hence such requests exist w.h.p. as long as no node in Dζ

is informed. Also, with only few Dis informed, due to their high degrees, leaf nodes in Lζ
are unlikely to request from a Di containing the rumor, and hence the progress of rumor
propagation is stalled. J

I Theorem 4. There is a graph G = (V,E) of size Θ(n), such that for any S0 = {s} ⊂ V :
In expectation, the run-time of adversarial RPULL is in Ω(

√
n).

W.h.p., the run-time of randomized RPULL is in O(log2 n).

Proof. Let G′ and G′′ be duplicates of the graph G from Lemma 3, r′α and r′′α being the
respective duplicates of rα. We set G := G′ ∪G′′ and add the edge {r′α, r′′α}. Without loss of
generality let s ∈ V ′.

In the random version, the rumor propagates through all of G′ in O(log2 n) rounds. Due
to its low degree, r′′α gets the rumor from r′α within O(logn) time after G′ is informed and
again, in O(log2 n) rounds G′′ is informed completely.

In the adversarial version, G′′ can only learn the rumor from G′ through edge {r′α, r′′α}.
But once r′′α knows the rumor, we can apply Lemma 3 again to prove that now progress is
stalled. J

3 Comparison of PULL and RPULL

In this section we compare the two algorithms PULL and random RPULL on general graphs,
i.e., we analyze how many rounds of random RPULL are enough to cover the progress of
one round of PULL. More precisely, we show that w.h.p. the set of nodes informed after
O
(∆
δ · logn

)
rounds of random RPULL is a superset of the set of nodes informed in a single

PULL round. We manage to do so by coupling both algorithms. At the end of the section
we head out to prove that this bound is tight. Whenever we talk about RPULL in this
section we mean random RPULL.

3.1 Dominance and Couplings
We begin with two examples of insufficient definitions of domination between two rumor
spreading algorithms.

Showing for two algorithms A and A′ that P
(
u ∈ SA

)
≥ P

(
u ∈ SA′) holds for all u ∈ U

is not enough to obtain a natural dominance definition of A over A′, since due to dependencies
for a set M with |M | > 1 it might still be true that P

(
M ⊆ SA

)
< P

(
M ⊆ SA′).

Showing that P
(
M ⊆ SA

)
≥ P

(
M ⊆ SA′) (*) holds for all M ⊆ U is not enough either.

Assume the following example: Let U = {a, b, c} be the set of uninformed nodes. Assume
that under A the probability that the set of newly informed nodes equals {a, b, c}, {a}, {b}
or {c} is 1/8 + ε each and the probability that it equals one of the sets {a, b}, {a, c}, {b, c}
or ∅ is 1/8− ε each. Under A′ we inform any of those sets with probability 1/8. A direct
computation for all M ⊆ {a, b, c}, e.g., for M = {a}, P({a} ⊆ SA′) = 1/2 and

P({a} ⊆ SA) = P(SA = {a})+P(SA = {a, b})+P(SA = {a, c})+P(SA = {a, b, c}) = 1/2,

shows that inequality (*) is fulfilled for any M ⊆ U , but the probability of the event “at
least 2 nodes are informed” is by 2ε smaller for A than for A′. In the following we introduce
the classical method to relate stochastic processes, i.e., the notion of (first order) stochastic
dominance. However, we show that (proper) stochastic dominance between RPULL and
PULL does not exist and thus we weaken the notion afterwards.
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Stochastic Dominance and Coupling
Let (S,�S) be a finite distributive lattice and let X1 and X2 be random variables with
distributions P1 and P2 which take values in S. A function f : S → R is called increasing if
A �S B implies f(A) ≤ f(B).

I Definition 5 (Stochastic Dominance). We say that X2 stochastically dominates X1 if
E(f(X2)) ≥ E(f(X1)) holds for every increasing function f : S → R, where E(·) denotes
the expected value.

Alternative to Definition 5, one can show that one process stochastically dominates a second
process by defining a monotone coupling between the processes (cf. Theorem 7).

I Definition 6 ((Monotone) Coupling). A coupling of two random processes X1 and X2,
taking values in S with distributions P1 and P2, is a joint distribution P̂ of a random process
(X̂1, X̂2) taking values in S × S, such that its marginals equal the distributions of X1 and
X2, respectively, i.e.,∑

B∈S
P̂
(

(X̂1, X̂2) = (A,B)
)

= P1(X1 = A) ∀A ∈ S and

∑
A∈S

P̂
(

(X̂1, X̂2) = (A,B)
)

= P2(X2 = B) ∀B ∈ S.

A coupling P̂ is called monotone (written X1 ≤ X2) if additionally the following holds:

∀A,B ∈ S with P̂
(

(X̂1, X̂2) = (A,B)
)
> 0 it follows that A �S B. (1)

Note that the choice of a coupling between two processes is generally not unique. The
following theorem, Strassen’s Theorem [19, 7], shows an equivalence between stochastic
dominance and the notion of monotone couplings.

I Theorem 7 (Strassen [19, 7]). The following are equivalent:
1. X2 stochastically dominates X1,
2. There exists a monotone coupling between X1 and X2 such that X1 ≤ X2,
3. P (X2 ∈ F ) ≥ P (X1 ∈ F ) holds for every monotone set F ⊆ S. 3

Stochastic dominance/monotone couplings are the commonly known method to relate
stochastic processes and we would like to show that O(∆

δ logn) rounds of random RPULL
stochastically dominate one round of PULL. This, however, is not possible as one can easily
construct a graph in which some node u is informed with probability 1 in one round of PULL,
but with probability less than 1 in O(∆

δ logn) rounds of RPULL.4 Therefore we introduce
the notion of highly probable monotone couplings and – in analogy to the equivalencies from
Strassen’s Theorem – also the notion of highly probable stochastical dominance.

I Definition 8. A coupling P̂ of two random processes X1 and X2 is called monotone
w.h.p. (w.r.t. to n) (written X1 ≤w.h.p. X2) if for some c > 1 it satisfies∑

A6�B

P̂
(

(X̂1, X̂2) = (A,B)
)
≤ 1
nc
. (2)

We say X2 stochastically dominates X1 with high probability (w.r.t. n), if there exists a
coupling between X1 and X2 that is monotone with high probability (X1 ≤w.h.p. X2).

3 A set F ⊆ S is called monotone if A ∈ F and A �S B implies B ∈ F .
4 Figure 2 in Appendix A can be used to verify this.
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In this paper we will set S = 2U to be the power set of U , where U ⊆ V is the set of
uninformed nodes, �S equals the subset relation on U and X2 and X1 will be the respective
random variables describing which nodes get informed in RPULL and PULL. In general,
the parameter n in Definition 8 can be freely chosen; in our setting n will be the number of
nodes of the communication network. With this choice of parameters a monotone coupling
(w.h.p. w.r.t. n) is the desired relation of PULL and RPULL.

3.2 W.h.p. Monotone Coupling between PULL and RPULL
I Theorem 9. W.h.p., for any set of informed nodes S ⊆ V , T = O

(∆
δ logn

)
rounds of

random RPULL stochastically dominate a single round of PULL.

I Corollary 10. If in a graph G with initially informed nodes S ⊆ V the PULL algorithm
informs all nodes in T rounds with probability p, then the random RPULL algorithm informs
all nodes in time O

(
T · ∆

δ · logn
)
with probability (1− o(1))p.

By PUSH−RPULL we denote the combination of RPULL with a simultaneous execution
of the classic PUSH protocol. The restriction of a single node to answer only a limited
number of requests does not limit the progress of the PUSH algorithm when disseminating
a rumor. Hence we deduce the following corollary.

I Corollary 11. W.h.p., for any set of informed nodes S ⊆ V , T = O
(∆
δ logn

)
rounds of

PUSH−RPULL stochastically dominate a single round of PUSH−PULL.

To reduce dependencies between nodes which request from the same neighbor we introduce
a new algorithm VPULL (virtual pull). Note that VPULL is only introduced as a tool to
analyze the process RPULL; difficulties/impossibilities that arise in an actual implementation
of VPULL are not relevant. The proof of Theorem 9 is then split into two parts:

1. Lemma 13: W.h.p., T rounds of RPULL stoch. dominate one execution of VPULL,
2. Lemma 16: One execution of VPULL stochastically dominates one round of PULL.

Then Theorem 9 follows from the transitivity of the stochastical dominance relation.
By RPULLT we denote the (randomized) process RPULL which runs for T rounds, by

VPULL we denote one execution of VPULL and by PULL1 we denote the process PULL
which runs for one round only. The random variables SRPULL

T , SVPULL and SPULL
1 denote

the respective sets of nodes that are informed after the corresponding number of rounds. The
processes RPULLT , VPULL and PULL1 are not completely characterized by the random
variables SRPULL

T , SVPULL and SPULL
1 – one has to include information about all requests and

messages, that are sent by all nodes, to fully describe the random processes. Nevertheless,
to show the desired result, it is sufficient to find a monotone coupling where condition (1)
and (2), respectively, are fulfilled with regard to the subset relation of the set valued random
variables SRPULL

T , SVPULL and SPULL
1 .

Definition of VPULL
Let us define weakly connected nodes u ∈ U as nodes for which dS(u)/d(u) ≤ 1/2 and strongly
connected otherwise. To introduce the process VPULL we need the following parameters,
which we fix later.

K = Θ
(

∆
δ

+ logn
)
, T ′ = O

(
∆
δ

logn
)

and T = Θ(T ′), T � T ′
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An execution of VPULL consists of two phases. In the first phase nodes send tokens
instead of the actual rumor and w.h.p. nodes who have received a token in the first phase
are informed at the end of the second phase. In an execution of VPULL we let Xv(t) be the
number of tokens which node v has sent up to round t. In a specific round t denote with
Rv(t) the set of nodes requesting from some informed node v ∈ S and with rv(t) = |Rv(t)|
its cardinality. Rv, rv and Xv are random variables which describe certain properties of an
execution of VPULL, where large values of Xv or rv indicate the unlikely case in which the
(strict) monotonicity of a tentative coupling between VPULL and RPULLT might break.

I Definition 12 (Good, Bad Execution). An execution of VPULL is called a bad execution
if for some v ∈ V or 1 ≤ t ≤ T it holds that Xv(t) > K or rv(t) > K, otherwise it is called a
good execution.

A formal definition of VPULL can be found in Appendix, Section B. Here, we describe the
algorithm informally. An execution of VPULL is split into two phases – the first phase
consists of T rounds and the second phase of one round. In the first phase an uninformed
node requests the rumor uniformly at random from one of its neighbors and an informed
node v decides with probability rv

T ′ whether to send out a token – in which case it selects,
uniformly at random, one of its incoming requests as destination for the token. Nodes that
get a token in those T rounds, stop requesting from neighbors, but are still unable to forward
any information to neighbors in consecutive rounds. In the second phase the limit to the
number of requests that can be served by an informed node is stripped away. Then, in case
of a bad execution (note that the first phase determines whether an execution is good or bad)
all actions from the first T rounds are discarded and all uninformed nodes perform one round
of PULL. In case of a good execution all uninformed strongly connected nodes perform one
round of PULL and afterwards all nodes holding a token are being informed. If we assume
that tokens are as valuable as the information itself, in each of the T rounds of the first
phase, VPULL differs from RPULL only in the fact that the selected incoming connection
is established with probability rv

T ′ whereas it is established deterministically in RPULL. For
an uninformed node u ∈ U , that chooses to request a neighbor v ∈ S, this normalizes the
probability to get a token to 1/T ′, independent of the amount of other requesting nodes.
Except for the second phase this algorithm is clearly dominated by RPULL.

W.h.p. Monotone Coupling between RPULL and VPULL
First, we generate a monotone coupling between T rounds of RPULL and the first phase of
VPULL as follows: For each round in the first phase both processes use the same randomness
to decide on the outgoing calls of uninformed nodes (if in a round t > 1 a node is uninformed
in VPULL but not in RPULL the process VPULL uses additional randomness; the contrary
cannot happen). VPULL uses additional randomness to decide whether a node, which is
contacted, sends out any message at all, confer line 13 from Algorithm 1. This simultaneous
execution of both algorithms gives rise to a coupling of the first phase of VPULL and
RPULLT . Clearly, a node that is provided with a token in VPULL in any round is then
also informed in RPULL, i.e., the coupling is monotone.

I Lemma 13. RPULLT stochastically dominates VPULL with high probability.

Proof. Under the assumption that tokens are as valuable as the information itself we
constructed a monotone coupling of the first phase of VPULL and SRPULL

T . Then, it is
sufficient to prove that in the second phase of VPULL, w.h.p., no node is informed, that
has not been informed in the T rounds of RPULL: If neither ever any value rv nor any Xv
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exceeded K, then only strongly connected nodes simulate one round of PULL in the second
phase of the VPULL algorithm. We claim that, w.h.p., each strongly connected node has
been informed in the first T rounds of RPULL.

A strongly connected node u ∈ U requests from an informed node v ∈ S with probability
at least 1/2. In any given round due to Markov inequality with probability at least 1/2 no
more than 2∆/δ nodes u′ ∈ U connect to v. The probability for u to get informed under
RPULL is thus at least δ

8∆ . Choosing T = O
(∆
δ logn

)
big enough and a union bound gives

us that, w.h.p., all strongly connected nodes are informed in process RPULLT .
To conclude, we prove that w.h.p. neither rv nor Xv exceed K for any node v during an

execution of VPULL. Let 1 < κ < cT,T ′ be constants, K ′ := ∆
δ + logn and K = cT,T ′K ′.

W.h.p., rv ≤ K in VPULLT for all v. For a fixed informed node v, in expectation, no
more than ∆

δ nodes can request from v. Using a Chernoff bound for a single round and a
single node, P

(
rv ≥ κ

(∆
δ + logn

))
≤ n−Θ(κ) holds. With a union bound over all nodes and

all rounds and κ large enough we obtain that, w.h.p., rv never exceeds κK ′ and therefore
neither K. A union bound over all nodes concludes the proof.
W.h.p., Xv ≤ K in VPULLT for all v. For a fixed v, note that, w.h.p., in a single
round no more than κK ′ nodes request from v, and therefore, Xv is increased at most with
probability κK ′/T ′ in any round. Over T rounds, in expectation, no more than κK ′ TT ′

increments of Xv happen, and again a Chernoff bound gives us that Xv does not exceed
2κK ′ TT ′ with high probability. Choosing cT,T ′ = 2κ T

T ′ and a union bound over all nodes
concludes the proof. J

Stochastic Dominance between VPULL and PULL
In a single round of PULL a node u ∈ U is informed with probability dS(u)

d(u) , independently
from which other nodes are informed. For one execution of VPULL we can show that a node
u is also informed at least with probability dS(u)

d(u) , independently from which other nodes
get informed (Lemma 14). Afterwards, we prove that Lemma 14 is sufficient to deduce the
stochastic dominance of one execution of VPULL over PULL1. For u ∈ U and random
process X, let CXu be the set of all conditions of the type v ∈ X or v /∈ X where v 6= u.

I Lemma 14. In VPULL a node u ∈ U is informed at least with probability dS(u)
d(u) , inde-

pendently from which other nodes are informed, i.e., for all sets of conditions I ⊆ CVPULL
u

and J ⊆ CPULL
u with P(I),P(J) > 0 the following holds

P
(
u ∈ SVPULL

T+1
∣∣ I) ≥ dS(u)

d(u) = P
(
u ∈ SPULL

1
)

= P
(
u ∈ SPULL

1
∣∣ J) . (3)

Proof. If u ∈ U is strongly connected, the result holds because VPULL executes one round
of PULL for u in either way. In a bad execution, VPULL executes one round of PULL for
any uninformed node and the claim holds trivially. Thus assume that u is weakly connected
and we are in a good execution. Let s = dS(u) and NS(u) = {v1, . . . , vs} be the neighbors
of u in S. We call a node v ∈ NS(u) busy w.r.t. u in round t if it informs some node other
than u. Let yt be the number of busy nodes in round t w.r.t. u. In a good execution (which
we denote by G), any node in NS(u) can inform at most K nodes and hence there is the
following constraint on the sum of all yt’s

T∑
t=1

yt ≤ s ·K. (4)
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We can ignore conditions in I corresponding to nodes which do not have a common neighbor
with NS(u) ∪ {u} because u can only get the rumor directly through S. The only negative
effect on the probability that u gets informed by the conditions in I can be captured by the
number of busy nodes w.r.t. u. However, since the number of nodes which are informed per
node in a good execution is small compared with T , there are sufficiently many rounds with
sufficiently many non-busy nodes to inform u. More precisely, if u requests from a non-busy
node it is informed at least with probability 1

T ′ . Thus, the probability that u, conditioned
on I ∧G with P(I ∧G) > 0, is not informed is smaller or equal to (with c = T/T ′)

T∏
t=1

(
1− s− yt

d(u) · T ′

)
≤

(
1−

s
(
1− K

T

)
d(u) · T ′

)T
≤ e−c(1−KT ) s

d(u) ≤ 1− dS(u)
d(u) .

The first inequality holds because under constraint (4) the expression on the left hand side is
maximized for yt = s·K

T . The last inequality holds due to s
d(u) ≤ 1/2, c(1−K/T ) ≥ 2 and

the fact that e−2x ≤ 1− x for any x ∈ [0, 1/2]. J

Lemma 14 is sufficient to show stochastic domination of one execution of VPULL over
PULL1. For a formal proof one can either directly construct a monotone coupling between
the random variables or use the following result due to Holley [15].

I Theorem 15 (Holley Inequality, [15]). Let (S, <) be a distributive lattice and let µ1, µ2 be
measures on this lattice. The Holley criterion is satisfied if

µ1(A ∩B)µ2(A ∪B) ≥ µ1(A)µ2(B) holds for all A,B ∈ S. (5)

If the Holley criterion is satisfied for µ1 and µ2 then∑
A∈S

µ1(A)f(A) ≥
∑
A∈S

µ2(A)f(A) holds for all increasing functions f : S → R. (6)

I Lemma 16. One execution of VPULL stochastically dominates PULL1.

Proof. For the proof let U be those uninformed nodes u with 0 < dS(u) < d(u) and consider
the distributive lattice (S,�S) = (2U ,⊆). Every uninformed node u which is not contained
in this redefined U has either no connection to S at all, i.e., it is not informed in either
process, or dS(u) = d(u) holds, i.e., it is informed with probability one in either process
because also VPULL executes one round of PULL for it. Hence it is sufficient to show
stochastic domination of SVPULL over SPULL

1 restricted to this redefined set U . This choice of
U provides 0 < P(SPULL

1 = A),P(SVPULL = A) < 1 for all A ∈ S and we define the strictly
positive measures µ1(F ) := P

(
SVPULL ∈ F

)
and µ2(F ) := P

(
SPULL

1 ∈ F
)
for F ⊆ 2U . For

A in S = 2U , x ∈ U define Ax := A ∪ {x} and Ax := A\{x}.
The proof of Lemma 16 then follows with Theorem 15, the following claims and the

definition of the expected value of an increasing function f : S → R.

I Claim 17 (Quotient Rule).
µ1(Ax)
µ1(Ax) ≥

µ2(Bx)
µ2(Bx) holds for all A,B ∈ S. (7)

I Claim 18. The quotient rule (17) implies that the Holley criterion is satisfied for the
measures µ1 and µ2.

The proofs of both claims are based on Lemma 14 and can be found in the appendix.
J

Proof of Theorem 9. The proof is a direct combination of Lemma 13 and Lemma 16. J
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3.3 The Round-by-Round Analysis is Tight

I Lemma 19. The time bound T = O(∆
δ logn) from Theorem 9 is tight.

Proof. In order for T rounds of RPULL to dominate one round of PULL (w.h.p), any node
v must get informed in T rounds of RPULL with at least the same probability as within
one round of PULL (or w.h.p., if the latter probability equals one). We construct a graph
G for which at least T = Ω(∆

δ logn) rounds of RPULL are necessary to guarantee this. A
picture depicting the graph can be found in Appendix A.

We partition set V into V = A ·∪B ·∪T1,1 ·∪ . . . ·∪Tk2,k2 , where k = n1/5, A = {a1, . . . , ak2}
and B = {b1, . . . , bk2}. A and B form a complete bipartite graph with edges running between
A and B. For each j ∈ [k2], node bi is connected to one node ti,j ∈ Ti,j . Each Ti,j forms a
complete graph of size k. In this graph, δ = k − 1 (acquired in Ti,j) and ∆ = 2k2 (nodes in
B), and therefore ∆/δ ∈ Θ(k). The total size of the graph is |V | = n+ o(n). Initially, we let
S0 = B.

In this graph, within one round of PULL, all nodes of A are informed with probability 1.
Now, consider the same graph after m ≤ k2/2 rounds of RPULL and let us assume that
some node a ∈ A is still uninformed. It requests in this round from some node bi. Let Xi be
the number of requests at bi. Within m rounds, each node bi managed to inform at most m
of its neighbors from NBi := {ti,1, . . . , ti,m}. Since m ≤ k2/2, at least half of all nodes in
NBi are still uninformed and thus, since they have degree k, E[Xi] ≥ k/2. Applying Chernoff,
we get that w.h.p., Xi ≥ k/4. In this scenario for a the probability to be chosen over one of
its competitors is at most 4/k, regardless of m, and therefore, P(a ∈ SRPULL

m ) ≤
(
1− 4

k

)m.
For this to fall below 1/n, m has to be in Θ

(∆
δ logn

)
. J

4 Conclusions

Lemma 19 and Theorem 9 show that to simulate one round of PULL, Θ
(∆
δ logn

)
rounds

of RPULL are required. However, in case one wants stochastical dominance (w.h.p.) over
T > 1 rounds of PULL, the lower bound proof of Lemma 19 does not hold anymore. We
believe that for T = Ω(logn), on any graph G and any set of initially informed nodes S ⊆ V ,
O
(
T
(∆
δ +logn

))
or maybe even O

(
T
(∆
δ

)
+logn

)
rounds of RPULL suffice to stochastically

dominate T rounds of PULL. That proving this assumption might be a challenging task is
underlined by a similar conjecture in [1], in which the authors do a coupling of synchronous
and asynchronous PUSH-PULL. They obtain a similar multiplicative O(logn) factor and
also conjecture that it can be improved to an additive O(logn) term.

A possible alternative restriction of the PUSH-PULL protocol could be given by the
following algorithm. In each round, every node requests from an outgoing neighbor chosen
uniformly at random. At each node, one of the incoming requests is chosen (e.g., uniformly at
random) and a connection to the requesting node is established. Finally, over all established
links between an informed and an uniformed node, the uninformed node learns the rumor.
Note that unlike in the restricted PUSH-PULL variant described in our paper, here, also
two informed nodes or two uninformed nodes could be paired. Such a PUSH-PULL variant
can be analyzed in an analogous way to our analysis of the RPULL protocol and it can be
shown that O

(∆
δ logn

)
rounds of this algorithm stochastically dominate a single round of

the regular PUSH-PULL protocol.
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Appendix

A Pictures

A.1 Picture for Lemma 3, Figure 1

Dα Dζr rζrα

Cα

Lα Lζ

D1

D2

D3

Dm

√
n

nn

logn

m logn

Figure 1 Picture for Lemma 3, proving that random and adversarial RPULL have exponentially
different running times on general graphs. Grey areas indicate fully connected parts of the graph.

In random RPULL the node rζ learns the rumor within O(log2 n) rounds and can spread
the information through the graph in polylogarithmic time.

In adversarial RPULL the adversary prevents rζ from learning the rumor by always
disseminating the rumor to one of the requesting nodes of in D1, . . . , Dm in every round. We
can show that the number of informed Dis grows slowly and hence such requests exist w.h.p.
as long as no node in Dζ is informed. Also, with only few Dis informed, due to their high
degrees, leaf nodes in Lζ are unlikely to request from a Di containing the rumor, and hence
the progress of rumor propagation is stalled.
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A.2 Picture for Lemma 19, Figure 2

. . .

Kδ Kδ Kδ Kδ

. . . . . .

. . .Kδ Kδ Kδ Kδ
. . .

T1,1 T1,k2 Tk2,1 Tk2,k2

A

B

Figure 2 Picture for Lemma 19, proving that Ω( ∆
δ

log n) rounds of RPULL are necessary to
simulate one round of PULL.

All not filled circular nodes in the bipartite graph, i.e., the nodes in B, have the rumor at
the start of the execution. In one round of PULL all filled nodes in the bipartite graph (A)
learn the rumor with probability one. In random RPULL Ω(∆

δ logn) rounds are necessary
to inform these nodes, because for each of the nodes in A the probability to be informed in
one round of RPULL is in Θ(1/k). This is due to the high number of requests from nodes
in Ti,j each round to the informed nodes in B.
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B Pseudocodes

Algorithm 1 One execution of VPULL ((T + 1)-rounds)
Input: K – threshold for bad execution; T ′ – parameter to normalize probabilities
States: informed; uninformed
Oracle knowledge: dS(v) for every node v; BE :=

∨
v∈V BEv

Variables: Rv set of nodes requesting from v in the corresp. round (rv := |Rv|)
BEv boolean indicator for bad execution caused at node v

tokenReceivedv indicates whether a node will be informed after T rounds
1: BEv ← false; tokenReceivedv ← false
2: for T rounds do
3: switch statev do
4: case uninformed
5: if tokenReceivedv = false then
6: send request for rumor uniformly at random
7: if msg = token then
8: tokenReceivedv ← true
9: case informed
10: if rv > K or Xv > K then // bad execution has been detected locally
11: BEv ← true
12: else
13: with probability rv/T ′ do
14: send token to uniformly at random chosen node in Rv 6= ∅
15: Xv ← Xv + 1

// Round T + 1:
16: request (BE, dS(v)) from global oracle
17: if BE = true then // bad execution has been detected globally
18: execute one round of PULL // executed locally
19: else
20: if dS(v)/d(v) > 1/2 then // node is strongly connected
21: execute one round of PULL // executed locally
22: else if tokenReceivedv = true then
23: statev ← informed // node learns rumor

Note that VPULL is only introduced as a tool and we do not claim that it can be
implemented as a distributed algorithm. Correct values for the parameters K and T ′ are
defined in section 3.2. The variables Xv, Rv, rv, BEv and BE can either be understood as
random variables describing an execution of the VPULL algorithm or they can be updated
directly in the algorithm as done above. Except for line 16 which uses global knowledge
VPULL can be seen as a distributed algorithm.
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C Proofs

Chernoff Statement for Lemma 2
I Lemma 20. Let X1, X2, . . . , Xn be independent geometric random variables with Xi ∼
Geo(pi) for i = 1, . . . , n, t ∈ N and 0 < p1 ≤ p2 ≤ ... < 1. Let X =

∑n
i=1Xi and µ := E[X].

Then

P (X > 3(µ+ t)) ≤ e−
p1
2 µ−p1t. (8)

Proof. Let γ = − ln(1 − p1
3 ) > 0. Because of p1 ≤ pi this implies eγ · (1 − pi) < 1 for all

i = 1, . . . , n. We need this condition at (∗) in the proof of the following claim.

I Claim 21. E[eγXi ] ≤ 1 + p1
2pi .

Proof of Claim 21. With a straight forward calculation one obtains

E
[
eγXi

]
=
∞∑
k=1

P (Xi = k) eγk = pie
γ
∞∑
k=1

((1− pi)eγ)k−1

(∗)= pie
γ

1− (1− pi)eγ
= pi
e−γ − 1 + pi

= 1 + 1− e−γ

e−γ + pi − 1 = 1 +
1− (1− p1

3 )
1− p1

3 + pi − 1

= 1 +
p1
3

pi − p1
3
≤ 1 + p1

2pi
.

J

Now we can show the actual result. Since x 7→ eγx is an increasing function for γ > 0 we
obtain

P (X > 3(µ+ t)) = P
(
eγX > eγ3(µ+t)

)
(Markov)

≤ e−3γ(µ+t)
n∏
i=1

E
[
eγXi

]
(claim 1)

≤ e−3γ(µ+t)
n∏
i=1

(
1 + p1

2pi

)
(1 + x ≤ ex, x ∈ R)

≤
(

1− p1

3

)3(µ+t)
e
∑n

i=1
p1
2pi

(
µ =

n∑
i=1

1
pi

)

=
(

1− p1

3

)3(µ+t)
(e

p1
2 µ) (1− x ≤ e−x, x ∈ R)

≤ e−
(
p1(µ+t)+ p1

2 µ
)

= e−
p1
2 µ−p1t.

J

C.1 Proofs for Section 2
I Lemma 2. Let G be a tree network with S0 = {r}. Then in both random and adversarial
RPULL it takes O

(
maxpath pMp + ∆ logn

)
rounds to fully inform all nodes in V , w.h.p..
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Proof. The analysis we use does hold for adversarial RPULL.
First look at a path p = pr,l = (r = v0, v1, v2, . . . , vq = l) from the root to some leaf l

and define ∆p = maxv∈p d(v). Let Ti be the random variable that indicates the round in
which node vi gets informed and with T0 := 0 we can define Xi := Ti−Ti−1 for m = 1, . . . , q,
the time node vi−1 needs to pass the information forward to node vi. For simplicity in the
following we define u := vi and s := vi−1.

Once s gets informed, a round is called free if no node in N(s) \ {vi−2, u} requests to s,
otherwise it is called congested. In a free round, u gets the rumor with probability at least
1/d(u), i.e., the number of free rounds is upper bounded by a geometric random variable
Yi,free ∼ Geom(1/d(u)). On the other hand, in a congested round, at least one neighbor of s
does get informed, so there can not be more than d(s) such rounds.

In total we get for round t′ that P(Xi ≥ t′) ≤ P(Yi,free + d(s) ≥ t′) for node u = vi and
with Tq =

∑q
i=1Xi we conclude that P(Tq ≥ t′) ≤ P(

∑q
i=1 Yi,free +

∑q
i=1 d(vi−1) ≥ t′).

Since we are on a tree, those geometric random variables are all independent, and we
can apply the Chernoff Lemma 20. Let ∆p be the largest degree of all nodes on the path
excluding r, i.e., p1 = 1/∆p in terms of the notation from Lemma 20. With Y =

∑q
i=1 Yi,free

we have µ = Dp − d(r) ≥ ∆p and we set t = c∆p logn for some c > 0.

P(Y > 3(µ+ t)) ≤ e−
µ

2∆p e
− c∆p logn

∆p < n−c,

i.e., w.h.p., vq is informed within O(Dp + ∆p logn) = O(maxpath pDp + ∆ logn) rounds. In
a tree there are at most n root-leaf paths, therefore a union bound over all individual paths
concludes the proof. J

I Lemma 3. There is a graph G = (V,E) of size Θ(n) with node rα ∈ V , d(rα) ≤ 3, s.t.:
For S0 = {rα}, w.c.p., the run-time of adversarial RPULL is in Ω(

√
n).

For any non-empty S0 ⊂ V , w.h.p., the run-time of randomized RPULL is in O(log2 n).

Proof. Recall that a picture depicting the graph can be found in Appendix A.
We use the notation w.h.p.(k) to say that some event holds with high probability with

respect to k, i.e., with probability at least 1− 1/k.
We first introduce a graph type, with size depending on some parameter k, that we call

a k-leaf-connected tree (k-LCT). In simple words, a k-LCT is a binary tree with k leaves,
but with those k leaves being fully interconnected, i.e., forming a clique. Mathematically
more precise, a graph H = (B ·∪L,EB ·∪EL) with |L| = k and |B| = k − 1 is a k-LCT, iff
HL = (L,EL) is a complete graph over k nodes and HB = (B ·∪L,EB) is a complete binary
tree with its leaves being the nodes in L. While H is not strictly speaking a tree, we call
nodes in L its leaves, L(H) = L the leaf set, B(H) = B its branch set and the root of HB we
call the root of H. Also, every node in H except for its root has a clearly designated parent
(defined by HB) and each node in B has two clearly designated children (with respect to the
root in HB).

I Claim 22. Let G = (V,E) be a graph and H = (VH , EH) be a subgraph of G that is a
k-LCT. Furthermore, let any node v ∈ VH have at most one connection outside of VH , i.e.,
dG(v) ≤ dH(v) + 1. Then, w.h.p.(k), for any non-empty set of nodes in H knowing the
rumor, randomized RPULL informs all nodes in H within O(log k) rounds.

Proof of Claim 22. Without loss of generality let there be one node s having the rumor. If
s ∈ B := B(H), i.e., dG(s) ≤ dH(s) + 1 ≤ 4, then we can apply Lemma 2 to get that all
nodes in B are informed within O(log k) rounds. Let this be the case. All nodes in L := L(H)
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have degree at most k + 1: k − 1 neighbors in L, one “parent-node” in B and at most one
neighbor in V \ VH . Each of them requests to its neighboring parent from B with probability
at least 1/(k + 1), i.e., in each round, with probability at most

(
1− 1

k+1
)k
< 1/2, no node

in L learns the rumor. By Chernoff, w.h.p.(k), after O(log k) rounds, at least one node in
L knows the rumor. If x > 0 nodes in L are informed, then each uninformed node u in L
requests from one of those x nodes (or a node in B) with probability at least x/(k + 1) and
with probability at least (1 − 1/k)k−1 > 1/3 node u is the only node requesting from its
target. As long as x < k/2, with linearity of expectation, each round the expected number of
newly informed nodes in L is in Ω(x). Once x ≥ k/2 we can use a similar argument to show
that, w.c.p., the number of uninformed nodes goes down by a constant factor each round.
Hence, after O(log k) rounds in expectation, but also w.h.p.(k), all nodes in L are informed.

If initially s ∈ L, then with probability p ∈ {1/4, 1/3} its parent node in B requests from
s, while at the same time with probability at least (1− 1/k)k−1 > 1/3 no other node in L
requests from s. Hence, after O(log k) rounds, w.h.p., the parent node gets the rumor from
s. The rest follows from reduction to the first case. J

We construct G = (V1 ·∪Vζ , E) as follows. We let Dα and Dζ be two n-LCTs, and we
have m l-LCTs that we denote with D1, D2, . . . , Dm, where l :=

√
n and m := c

√
n for some

natural number c. We use the notation Di for the corresponding k-LCT and its node set
interchangeably. Their corresponding roots and leaf sets are denoted as rα, rζ , r1, r2, . . . rm
and Lα, Lζ , L1, L2, . . . Lm respectively, and with lX,1, lX,2, . . . we enumerate the leaves of
leaf set LX . Let Cα = {c1, . . . cm} be an arbitrary m-sized subset of Dα’s branch set Bα –
for simplicity and in accordance to Figure 1 think of Cα as the layer of nodes in Bα that are
at depth logm.

We let Vζ = Dζ and V1 = {r} ∪Dα ∪D1 ∪ . . . ∪Dm and we add the following edges.
Between r and Dζ : We add an edge from r to rζ .
Between r and Dα: For each j ∈ [m logn] we add an edge from r to lα,j .
Between r and D1, . . . , Dm: For each i ∈ [m], j ∈ [logn] we add an edge from r to li,j .
Between D1, . . . , Dm and Dζ : For each i ∈ [m] we add an edge from ri to lζ,i.
Between D1, . . . , Dm and Cα: For each i ∈ [m] we add an edge from li,l to ci.

Note that the degree d(r) is 2m logn+ 1 and that all the above defined edges add to any
node in a LCT at most one edge that connects it to a node outside its own LCT.

The idea of the proof is the following: The graph is built in a way that information
propagation from Vζ to V1 is quick, but not the other way round. In the random RPULL
model, wherever the rumor starts, it reaches r quickly and from there rζ manages to get the
rumor from r in polylogarithmic time. Then the rumor quickly propagates through Vζ = Dζ ,
and from Lζ to all LCTs D1, . . . , Dm and afterwards to Dα.

In the adversarial RPULL model, as long as the rumor does not start in Vζ , the rumor
can quickly spread to r, a few of the Dis and Dα but not to Vζ because we let the adversary
always prioritize a request at node r from a node in one of the Dis over a request from rζ to
prevent that rζ will get the rumor. This is possible because we show that for polynomially
many rounds there is always a request at r from one of the Dis to serve. Thus, to inform Dζ

all information must go through one of the edges {ri, lζ,i}, i = 1, . . . ,m, with ri informed.
In less than a polynomial number of rounds few enough of the ris are informed and in each
round only few requests from the leaf nodes Lζ request from one of the ris at all making it
unlikely that one of them requests from an informed ri. Hence propagation through one of
these edges is unlikely and it takes a long time for the rumor to spread over the entire graph.
Random RPULL. We start proving that random RPULL manages to spread the rumor
quickly in G.
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(1) If there is an informed node in Dζ , by Claim 22, w.h.p., all of Dζ is informed in O(logn)
rounds. Assume this has happened. Since each root of a LCT Di has degree 3 in G, it
requests the rumor from an informed leaf node in Lζ w.c.p.– since no other node in Lζ
is still uninformed and therefore able to create a conflict, w.h.p., in O(logn) rounds, all
root nodes r1, . . . , rm know the rumor.

(2) If there is an informed node in Di for some i = 1, . . . ,m, due to Claim 22, the whole
LCT Di is informed w.h.p.(m) (=w.h.p.) within O(logm) = O(logn) rounds. Assume
this has happened. Node ci ∈ Cα has degree at most 4 and therefore requests from its
neighboring node li,m w.c.p., and since all nodes in Di are informed, it will also get the
rumor.

(3) If there is an informed node in Dα, by Claim 22, w.h.p., all of Dα is informed in O(logn)
rounds. Assume this has happened. Almost half of all neighbors of r lie in Lα, and with
same reasoning as above, r gets the rumor w.h.p. within O(logn) rounds.

(4) Let r be informed. All its neighbors in Lα have degree n+ 1 and therefore request with
probability at most 1/n from r, i.e., in expectation no more than 1 node from there
requests the rumor from r each turn. Each neighboring leaf node in some Li has degree
m+ 1, i.e., requests the rumor from r with probability at most 1/m. Since r has m logn
such neighbors, in expectation no more than logn such neighbors request from r. With
a Chernoff bound, w.h.p. there are no more than O(logn) requests at r. Since rζ has
degree 3, it therefore requests w.c.p. and gets the rumor with probability Ω(1/ logn).
W.h.p., the rumor is therefore propagated to rζ in O(log2 n) rounds.

Altogether, wherever the source node is located, the above reasoning shows that, w.h.p., the
rumor is propagated to all nodes within O(log2 n) rounds.
Adversarial RPULL. Let s ∈ V be the source node with the rumor. If s ∈ Di for some
i ∈ [m], then, without loss of generality, we assume that all nodes in Di, Dα and r are
already informed, initially. Otherwise we inform all nodes in Dα and r. For i ∈ [m] we call
any Di informed, if it contains at least one informed node, otherwise uninformed.

The adversary has the following simple strategy. If rζ and at least one other node requests
the rumor from r, then r chooses to pass the rumor to any other node than rζ . In every
other aspect it follows an arbitrary strategy.

For time t we denote with Xt the number of informed LCTs Di, and we assume without
loss of generality that the corresponding LCTs are D1, . . . , DXt . Let Et be the event that
in round t no node in Dζ has the rumor. Conditioning on this event implies that, by the
structure of our graph and our model, nodes from LCTs Di need to get the rumor from
either r or from Dα, via connections {ci, li,m}.

Let Xt be the event that Xt < 4ct+ 2 logn, At the event that rζ gets the rumor in round
t and let Ct be the event that a node from Lζ gets the rumor from one of the roots ri.

I Claim 23. P(Xt|Et) ≥ 1− 1/n ≥ e−1/n for any t ≤ l/5c.

Proof of Claim 23. In each round, r can inform at most one node in a yet uninformed LCT
Di. Also, any uninformed node li,l connects to its neighbor ci in Dα only with probability
1/(l + 1) < 1/l. With at most m such uninformed nodes trying to get the rumor from Dα

each round, the amount of nodes li,l, i = 1, . . . ,m informed through such an edge is upper
bounded by a Binomial random variable Bin(tcl, 1/l). Let X ′t be the random variable that
counts the number of times when an uninformed LCT Di gets informed through such an edge
to Dα but not through a connection to r. Then, by Chernoff, for ρ = (3− 1

c ) + 2 logn
ct > 1,

P(Xt ≥ t+ ct+ ρct|Et) ≤ P(X ′t ≥ (1 + ρ)ct) ≤ exp
(
− tc2 ρ ln(1 + ρ)

)
≤ n−1.
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Therefore, w.h.p., Xt is smaller than 4ct+ 2 logn for t ≤ l/5c. J

I Claim 24. P(At+1|Et ∩ Xt) ≤ 1/n ≤ 1− e−1/n for any t ≤ l/5c.

Proof of Claim 24. Every uninformed node li,j ∈ Li, where j ∈ [logn] and i ∈ [m], requests
from r with probability 1/(l + 1). Choosing c large enough Xt implies that at least m/2 of
the Dis are uninformed. Thus there are at least (m/2) · logn uninformed leaf nodes with
a connection to r in uninformed LCTs Di. At least 0.4c logn such nodes request from r in
expectation. Choosing c large enough, a simple Chernoff bound gives us that, w.h.p., at least
one of these nodes requests from r. Consequently, w.h.p., r does not give the rumor to rζ in
round t+ 1. J

I Claim 25. P(Ct+1|Et ∩ Xt) ≤ 1− e− 1
n (2ct+logn) for any t ≤ l/5c.

Proof of Claim 25. By our assumption of Et, at the start of round t+ 1, no node in Dζ has
the rumor, so for Ct+1 to possibly happen, a node from Lζ must request from one of the
nodes r1, . . . , rXt , which it does with probability 1/(n+ 1) < 1/n. The probability for Ct+1
to happen is therefore

P(Ct+1|Et ∩ Xt) ≤ 1−
(

1− 1
n

)Xt
≤ 1− exp

(
− 1
n

(2ct+ logn)
)
.

J

We know that At+1 ∪ Ct+1 ∩ Et ∩ Xt ⊆ Et+1 since if under condition Et neither At+1 nor
Ct+1 happens, then no node in Dζ can get informed in round t+ 1.

I Claim 26. P(Et) ≥ e−
1
n (2ct2+t logn) for any t ≤ l/5c.

Proof of Claim 26. The proof follows by induction. In round t = 0 clearly no node in Dζ is
informed, so the induction base holds. For the following, note that conditioned on Et, events
At+1 and Ct+1 (and therefore also their complements) are independent.

P(Et+1) ≥ P(At+1 ∪ Ct+1 ∩ Et ∩ Xt) = P(Et ∩ Xt) P(At+1 ∩ Ct+1|Et ∩ Xt)
≥ P(Et) P(Xt|Et) P(At+1|Et ∩ Xt) P(Ct+1|Et ∩ Xt)

≥ exp
(
−
(

1
n

(2ct2 + t logn) + 1
n

+ 1
n

+ 1
n

(2ct+ logn)
))

≥ exp
(
− 1
n

(
2c(t+ 1)2 + (t+ 1) logn

))
J

J

This means, that after t =
√
n/c rounds with probability at least e−3 still not all Θ(n) nodes

in G are informed, concluding the proof of Lemma 3. J

C.2 Proofs for Section 3
I Claim 17 (Quotient Rule).

µ1(Ax)
µ1(Ax) ≥

µ2(Bx)
µ2(Bx) holds for all A,B ∈ S. (7)
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Proof. At first note that for any C ∈ S it holds that

P(SPULL
1 = Cx|SPULL

1 ∈ ({Cx, Cx})) = P(x ∈ SPULL
1 ) = dS(x)

d(x) . (9)

This is true because in PULL x is informed independently of what else is happening and due
to the fact that we already condition on SPULL

1 being either Cx or Cx, hence the probability
of SPULL

1 being Cx depends solely on x being informed. Second, recall that µ1 and µ2 are
strictly positive measures, so µ1(C), µ2(C) > 0 for every C ∈ S, even C = ∅, U .

Let A,B ∈ S and x ∈ U . Then Lemma 14 implies

⇒ P(SVPULL = Ax|SVPULL ∈ ({Ax, Ax})) ≥ P(SPULL
1 = Ax|SPULL

1 ∈ ({Ax, Ax}))
(9)= P(SPULL

1 = Bx|SPULL
1 ∈ ({Bx, Bx}))

⇒ µ1(Ax)
µ1(Ax) + µ1(Ax) ≥

µ2(Bx)
µ2(Bx) + µ2(Bx)

⇒ µ1(Ax) + µ1(Ax)
µ1(Ax) ≤ µ2(Bx) + µ2(Bx)

µ2(Bx)

⇒ µ1(Ax)
µ1(Ax) ≤

µ2(Bx)
µ2(Bx)

⇒ µ1(Ax)
µ1(Ax) ≥

µ2(Bx)
µ2(Bx) . J

J

I Claim 18. The quotient rule (17) implies that the Holley criterion is satisfied for the
measures µ1 and µ2.

Proof. 5

Let A,B ∈ S and C := A\B = {c1, . . . , cr}. The Holley criterion is trivially fulfilled if
A ⊆ B; hence assume otherwise, which implies r ≥ 1. Write Cs := {c1, . . . , cs} for 1 ≤ s ≤ r.
By a telescoping argument we obtain the following.

µ1(A ∪B)
µ1(B) = µ1(B ∪ C)

µ1(B ∪ Cr−1) ·
µ1(B ∪ Cr−1)
µ1(B ∪ Cr−2) · · · · ·

µ1(B ∪ C1)
µ1(B) (10)

Applying (7) to each fraction we obtain

≥ µ2((A ∩B) ∪ C)
µ2((A ∩B) ∪ Cr−1) ·

µ2((A ∩B) ∪ Cr−1)
µ2((A ∩B) ∪ Cr−2) · · · · ·

µ2((A ∩B) ∪ C1)
µ2((A ∩B)) (11)

= µ2(A)
µ2(A ∩B) . (12)

J

5 This proof is adapted from [14, chapter 2, page 24].
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