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Abstract

It is common practice to use the epithet “highly concurrent” referring to data structures
that are supposed to perform well in concurrent environments. But how do we measure the
concurrency of a data structure in the first place? In this paper, we propose a way to do this,
which allowed us to formalize the notion of a concurrency-optimal implementation.

The concurrency of a program is defined here as the program’s ability to accept concurrent
schedules, i.e., interleavings of steps of its sequential implementation. To make the defini-
tion sound, we introduce a novel correctness criterion, LS-linearizability, that, in addition to
classical linearizability, requires that the interleavings of memory accesses to be locally in-
distinguishable from sequential executions. An implementation is then concurrency-optimal
if it accepts all LS-linearizable schedules. We explore the concurrency properties of search
data structures which can be represented in the form of directed acyclic graphs exporting
insert, delete and search operations. We prove, for the first time, that pessimistic (e.g., based
on conservative locking) and optimistic serializable (e.g., based on serializable transactional
memory) implementations of search data-structures are incomparable in terms of concurrency.
Thus, neither of these two implementation classes is concurrency-optimal, hence raising the
question of the existence of concurrency-optimal programs.



1 Introduction

In the concurrency literature, it is not unusual to meet expressions like “highly concurrent data
structures”, used as a positive characteristics of their performance. Leaving aside the relation
between performance and concurrency, the first question we should answer is what is the concur-
rency of a data structure in the first place. How do we measure it?

At a high level, concurrency is the ability to serve multiple requests in parallel. A data
structure designed for the conventional sequential settings, when used as is in a concurrent en-
vironment, while being intuitively very concurrent, may face different kinds of inconsistencies
caused by races on the shared data. To avoid these races, a variety of synchronization tech-
niques have been developed [9]. Conventional pessimistic synchronization protects shared data
with locks before reading or modifying them. Optimistic synchronization, achieved using transac-
tional memory (TM) or conditional instructions such as CAS or LL/SC, optimistically executes
memory accesses with a risk of aborting them in the future. A programmer typically uses these
synchronization techniques to “wrap” fragments of a sequential implementation of the desired
data structure, in order to preserve a correctness criterion.

It is however difficult to tell in advance which of the techniques will provide more concurrency,
i.e., which one would allow the resulting programs to process more executions of concurrent oper-
ations without data conflicts. Implementations based on TMs [20, 28], which execute concurrent
accesses speculatively, may seem more concurrent than lock-based counterparts whose concurrent
accesses are blocking. But TMs conventionally impose serializability [26] or even stronger prop-
erties [15] on operations encapsulated within transactions. This may prohibit certain concurrent
scenarios allowed by a large class of dynamic data structures [10].

In this paper, we reason formally about the “amount of concurrency” one can obtain by turning
a sequential program into a concurrent one. To enable fair comparison of different synchronization
techniques, we (1) define what it means for a concurrent program to be correct regardless of the
type of synchronization it uses and (2) define a metric of concurrency. These definitions allow us to
compare concurrency properties offered by serializable optimistic and pessimistic synchronization
techniques, whose popular examples are, respectively, transactions and conservative locking.

Correctness. Our novel consistency criterion, called locally-serializable linearizability, is an
intersection of linearizability and a new local serializability criterion.

Suppose that we want to design a concurrent implementation of a data type T (e.g., integer
set), given its sequential implementation S (e.g., based on a sorted linked list). A concurrent
implementation of T is locally serializable with respect to S if it ensures that the local execution
of reads and writes of each operation is, in precise sense, equivalent to some execution of S. This
condition is weaker than serializability since it does not require the existence of a single sequential
execution that is consistent with all local executions. It is however sufficient to guarantee that
executions do not observe an inconsistent transient state that could lead to fatal arithmetic errors,
e.g., division-by-zero.

In addition, for the implementation of T to “make sense” globally, every concurrent execution
should be linearizable [23, 3]: the invocation and responses of high-level operations observed
in the execution should constitute a correct sequential history of T . The combination of local
serializability and linearizability gives a correctness criterion that we call LS-linearizability, where
LS stands for “locally serializable”. We show that LS-linearizability, just like linearizability, is
compositional [23, 21]: a composition of LS-linearizable implementations is also LS-linearizable.

Concurrency metric. We measure the amount of concurrency provided by an LS-linearizable
implementation as the set of schedules it accepts. To this end, we define a concurrency metric
inspired by the analysis of parallelism in database concurrency control [32, 18] and transactional
memory [12]. More specifically, we assume an external scheduler that defines which processes
execute which steps of the corresponding sequential program in a dynamic and unpredictable
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fashion. This allows us to define concurrency provided by an implementation as the set of sched-
ules (interleavings of reads and writes of concurrent sequential operations) it accepts (is able to
effectively process).

Our concurrency metric is platform-independent and allows for measuring relative concurrency
of LS-linearizable implementations using arbitrary synchronization techniques. The combination
of our correctness and concurrency definitions provides a framework to compare the concurrency
one can get by choosing a particular synchronization technique for a specific data type.

Measuring concurrency: pessimism vs. serializable optimism. We explore the concur-
rency properties of a large class of search concurrent data structures. Search data structures main-
tain data in the form of a rooted directed acyclic graph (DAG), where each node is a 〈key, value〉
pair, and export operations insert(key, value), delete(key), and find(key) with the natural sequen-
tial semantics. The class includes many popular data structures, such as linked lists, skiplists,
and search trees, implementing various abstractions like sets, multi-sets and dictionaries.

In this paper, we compare the concurrency properties of two classes of search-structure im-
plementations: pessimistic and serializable optimistic. Pessimistic implementations capture what
can be achieved using classic conservative locks like mutexes, spinlocks, reader-writer locks. In
contrast, optimistic implementations, however proceed speculatively and may roll back in the case
of conflicts. Additionally, serializable optimistic techniques, e.g., relying on conventional TMs,
like TinySTM [8] or NOrec [5] allow for transforming any sequential implementation of a data
type to a LS-linearizable concurrent one.

Main contributions. The main result of this paper is that synchronization techniques based
on pessimism and serializable optimism, are not concurrency-optimal: we show that no one of
their respective set of accepted concurrent schedules include the other.

On the one hand, we prove that there exist simple schedules that are not accepted by any
pessimistic implementation, but accepted by a serializable optimistic implementation. Our proof
technique, which is interesting in its own right, is based on the following intuitions: a pessimistic
implementation has to proceed irrevocably and over-conservatively reject a potentially acceptable
schedule, simply because it may result in a data conflict leading the data structure to an incon-
sistent state. However, an optimistic implementation of a search data structure may (partially
or completely) restart an operation depending on the current schedule. This way even schedules
that potentially lead to conflicts may be optimistically accepted.

On the other hand, we show that pessimistic implementations can be designed to exploit the
semantics of the data type. In particular, they can allow operations updating disjoint sets of
data items to proceed independently and preserving linearizability of the resulting history, even
though the execution is not serializable. In such scenarios, pessimistic implementations carefully
adjusted to the data types we implement can supersede the “semantic-oblivious” optimistic se-
rializable implementations. Thus, neither pessimistic nor serializable optimistic implementations
are concurrency-optimal.

Our comparative analysis of concurrency properties of pessimistic and serializable optimistic
implementation suggests that combining the advantages of pessimism, namely its semantics aware-
ness, and the advantages of optimism, namely its ability to restart operations in case of conflicts,
enables implementations that are strictly better-suited for exploiting concurrency than any of
these two techniques taken individually. To the best of our knowledge, this is the first formal
analysis of the relative abilities of different synchronization techniques to exploit concurrency in
dynamic data structures and lays the foundation for designing concurrent data structures that
are concurrency-optimal.

Roadmap. We define the class of concurrent implementations we consider in Section 2. In
Section 3, we define the correctness criterion and our concurrency metric. Section 4 defines the
class of data structures for which our concurrency lower bounds apply. In Section 5, we analyse
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the concurrency provided by pessimistic and serializabile optimistic synchronization techniques
to search data structures. We discuss the related work in Sections 6 and conclude in Section 7.

2 Preliminaries

Sequential types and implementations. An type τ is a tuple (Φ,Γ, Q, q0, δ) where Φ is a
set of operations, Γ is a set of responses, Q is a set of states, q0 ∈ Q is an initial state and
δ ⊆ Q×Φ×Q×Γ is a sequential specification that determines, for each state and each operation,
the set of possible resulting states and produced responses [2].

Any type τ = (Φ,Γ, Q, q0, δ) is associated with a sequential implementation IS . The imple-
mentation encodes states in Q using a collection of elements X1, X2, . . . and, for each operation of
τ , specifies a sequential read-write algorithm. Therefore, in the implementation IS , an operation
performs a sequence of reads and writes on X1, X2, . . . and returns a response r ∈ Γ. The im-
plementation guarantees that, when executed sequentially, starting from the state of X1, X2, . . .
encoding q0, the operations eventually return responses satisfying δ.

Concurrent implementations. We consider an asynchronous shared-memory system in which
a set of processes communicate by applying primitives on shared base objects [19].

We tackle the problem of turning the sequential algorithm IS of type τ into a concurrent one,
shared by n processes p1, . . . , pn (n ∈ N). The idea is that the concurrent algorithm essentially
follows IS , but to ensure correct operation under concurrency, it replaces read and write operations
on X1, X2, . . . in operations of IS with their base-object implementations.

Throughout this paper, we use the term operation to refer to high-level operations of the type.
Reads and writes implemented by a concurrent algorithm are referred simply as reads and writes.
Operations on base objects are referred to as primitives.

We also consider concurrent implementation that execute portions of sequential code spec-
ulatively, and restart their operations when conflicts are encountered. To account for such im-
plementations, we assume that an implemented read or write may abort by returning a special
response ⊥. In this case, we say that the corresponding (high-level) operation is aborted.

Therefore, our model applies to all concurrent algorithms in which a high-level operation can
be seen as a sequence of reads and writes on elements X1, X2, . . . (representing the state of the
data structure), with the option of aborting the current operation and restarting it after. Many
existing concurrent data structure implementations comply with this model as we illustrate below.

Executions and histories. An execution of a concurrent implementation is a sequence of
invocations and responses of high-level operations of type τ , invocations and responses of read
and write operations, and invocations and responses of base-object primitives. We assume that
executions are well-formed : no process invokes a new read or write, or high-level operation before
the previous read or write, or a high-level operation, resp., returns, or takes steps outside its
operation’s interval.

Let α|pi denote the subsequence of an execution α restricted to the events of process pi.
Executions α and α′ are equivalent if for every process pi, α|pi = α′|pi. An operation π precedes
another operation π′ in an execution α, denoted π →α π

′, if the response of π occurs before the
invocation of π′. Two operations are concurrent if neither precedes the other. An execution is
sequential if it has no concurrent operations. A sequential execution α is legal if for every object
X, every read of X in α returns the latest written value of X. An operation is complete in α
if the invocation event is followed by a matching (non-⊥) response or aborted; otherwise, it is
incomplete in α. Execution α is complete if every operation is complete in α.

The history exported by an execution α is the subsequence of α reduced to the invocations
and responses of operations, reads and writes, except for the reads and writes that return ⊥ (the
abort response).
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High-level histories and linearizability. A high-level history H̃ of an execution α is the
subsequence of α consisting of all invocations and responses of non-aborted operations. A complete
high-level history H̃ is linearizable with respect to an object type τ if there exists a sequential
high-level history S equivalent to H such that (1) →H̃⊆→S and (2) S is consistent with the

sequential specification of type τ . Now a high-level history H̃ is linearizable if it can be completed
(by adding matching responses to a subset of incomplete operations in H̃ and removing the rest)
to a linearizable high-level history [23, 3].

Optimistic and pessimistic implementations. Note that in our model an implementations
may, under certain conditions, abort an operation: some read or write return ⊥, in which case the
corresponding operation also returns ⊥. Popular classes of such optimistic implementations are
those based on “lazy synchronization” [17, 21] (with the ability of returning ⊥ and re-invoking
an operation) or transactional memory (TM ) [28, 5].

In the subclass of pessimistic implementations, no execution includes operations that return
⊥. Pessimistic implementations are typically lock-based or based on pessimistic TMs [1]. A lock
provides exclusive (resp., shared) access to an element X through synchronization primitives
lock(X) (resp., lock-shared(X)), and unlock(X) (resp., unlock-shared(X)). A process releases the
lock it holds by invoking unlock(X) or unlock-shared(X). When lock(X) invoked by a process pi
returns, we say that pi holds a lock on X (until pi returns from the subsequent lock(X)). When
lock-shared(X) invoked by pi returns, we say that pi holds a shared lock on X (until pi returns
from the subsequent lock-shared(X)). At any moment, at most one process may hold a lock on
an element X. Note that two processes can hold a shared lock on X at a time. We assume that
locks are starvation-free: if no process holds a lock on X forever, then every lock(X) eventually
returns. Given a sequential implementation of a data type, a corresponding lock-based concurrent
one is derived by inserting the synchronization primitives (lock and unlock) to protect read and
write accesses to the shared data.

3 Correctness and concurrency metric

In this section, we define the correctness criterion of locally serializable linearizability (LS-
linearizability) and introduce the framework for comparing the relative abilities of different syn-
chronization technique in exploiting concurrency.

3.1 Locally serializable linearizability

Let H be a history and let π be a high-level operation in H. Then H|π denotes the subsequence
of H consisting of the events of π, except for the last aborted read or write, if any. Let IS be a
sequential implementation of an object of type τ and ΣIS , the set of histories of IS .

Definition 1 (LS-linearizability). A history H is locally serializable with respect to IS if for
every high-level operation π in H, there exists S ∈ ΣIS such that H|π = S|π.

A history H is LS-linearizable with respect to (IS , τ) (we also write H is (IS, τ)-LSL) if:
(1) H is locally serializable with respect to IS and (2) the corresponding high-level history H̃ is
linearizable with respect to τ .

Observe that local serializability stipulates that the execution is seen as a sequential one by
every operation. Two different operations (even when invoked by the same process) are not
required to witness mutually consistent sequential executions.

A concurrent implementation I is LS-linearizable with respect to (IS, τ) (we also write I is
(IS , τ)-LSL) if every history exported by I is (IS , τ)-LSL. Throughout this paper, when we refer
to a concurrent implementation of (IS , τ), we assume that it is LS-linearizable with respect to
(IS , τ).
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R(r)R(X1)R(X3) R(X4)R(X5)

R(r)W (X1)

R(r)R(X1)W (X4)

find(5) true

insert(2) true

insert(5) true

Figure 1: A concurrency scenario for a set, initially {1, 3, 4}, where value i is stored at node Xi:
insert(2) and insert(5) can proceed concurrently with find(5). The history is LS-linearizable but
not serializable; yet accepted by HOH-find. (Not all read-write on nodes is presented here.)

We show in Appendix A that just as linearizability, LS-linearizability is compositional [23,
21]: a composition of LSL implementations is also LSL. However, LS-linearizability is not non-
blocking [23, 21]: local serializability may prevent an operation in a finite LS-linearizable history
from having a completion, e.g., because, it might read an inconsistent system state caused by a
concurrent incomplete operation.

LS-linearizability and other consistency criteria. LS-linearizability is a two-level consis-
tency criterion which makes it suitable to compare concurrent implementations of a sequential
data structure, regardless of synchronization techniques they use. It is quite distinct from re-
lated criteria designed for database and software transactions, such as serializability [26, 31] and
multilevel serializability [30, 31].

For example, serializability [26] prevents sequences of reads and writes from conflicting in a
cyclic way, establishing a global order of transactions. Reasoning only at the level of reads and
writes may be overly conservative: higher-level operations may commute even if their reads and
writes conflict [29]. Consider an execution of a concurrent list-based set depicted in Figure 1.
We assume here that the set initial state is {1, 3, 4}. Operation find(5) is concurrent, first with
operation insert(2) and then with operation insert(5). The history is not serializable: insert(5)
sees the effect of insert(2) because R(X1) by insert(5) returns the value of X1 that is updated by
insert(2) and thus should be serialized after it. Operation find(5) misses element 2 in the linked
list and must read the value of X4 that is updated by insert(5) to perform the read of X5, i.e., the
element created by insert(5). This history is, however, LSL since each of the three local histories
is consistent with some sequential history of LL.

Multilevel serializability [30, 31] was proposed to reason in terms of multiple semantic levels
in the same execution. LS-linearizability, being defined for two levels only, does not require a
global serialization of low-level operations as 2-level serializability does. LS-linearizability simply
requires each process to observe a local serialization, which can be different from one process to
another. Also, to make it more suitable for concurrency analysis of a concrete data structure,
instead of semantic-based commutativity [29], we use the sequential specification of the high-level
behavior of the object [23].

Linearizability [23, 3] only accounts for high-level behavior of a data structure, so it does not
imply LS-linearizability. For example, Herlihy’s universal construction [19] provides a linearizable
implementation for any given object type, but does not guarantee that each execution locally
appears sequential with respect to any sequential implementation of the type. Local serializability,
by itself, does not require any synchronization between processes and can be trivially implemented
without communication among the processes. Therefore, the two parts of LS-linearizability indeed
complement each other.

3.2 Concurrency metric

To characterize the ability of a concurrent implementation to process arbitrary interleavings of
sequential code, we introduce the notion of a schedule. Intuitively, a schedule describes the order
in which complete high-level operations, and sequential reads and writes are invoked by the user.
More precisely, a schedule is an equivalence class of complete histories that agree on the order of
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k' k' k'

Figure 2: Three search structures, a binary tree, a linked list and a skip list, whose k-relevant set
has grey nodes and whose k-relevant path is indicated with a dashed arrow

invocation and response events of reads, writes and high-level operations, but not necessarily on
the responses of read operations or of high-level operations. Thus, a schedule can be treated as
a history, where responses of read and high-level operations are not specified.

We say that an implementation I accepts a schedule σ if it exports a history H such that
complete(H) exhibits the order of σ, where complete(H) is the subsequence of H that consists
of the events of the complete operations that returned a matching response. We then say that
the execution (or history) exports σ. A schedule σ is (IS , τ)-LSL if there exists an (IS , τ)-LSL
history exporting σ.

An (IS , τ)-LSL implementation is therefore concurrency-optimal if it accepts all (IS , τ)-LSL
schedules.

4 Search data structures

In this section, we introduce a class D of dictionary-search data structures (or simply search struc-
tures), inspired by the study of dynamic databases undertaken by Chaudhri and Hadzilacos [4].

Data representation. At a high level, a search structure is a dictionary that maintains data in
a directed acyclic graph (DAG) with a designated root node (or element). The vertices (or nodes)
of the graph are key-value pairs and edges specify the traversal function, i.e, paths that should
be taken by the dictionary operations in order to find the nodes that are going to determine the
effect of the operation. Keys are natural numbers, values are taken from a set V and the outgoing
edges of each node are locally labelled. By a light abuse of notation we say that G find both nodes
and edges. Key values of nodes in a DAG G are related by a partial order ≺G that additionally
defines a property PG specifying if there is an outgoing edge from node with key k to a node with
key k′ (we say that G respects PG).

If G contains a node a with key k, the k-relevant set of G, denoted Vk(G), is a plus all nodes
b, such that G contains (b, a) or (a, b). If G contains no nodes with key k, Vk(G) consists of all
nodes a of G with the smallest k ≺G k′ plus all nodes b, such that (b, a) is in G. The k-relevant
graph of G, denoted Rk(G), is the subgraph of G that consists of all paths from the root to the
nodes in Vk(G).

Sequential specification. Every data structure in D exports a sequential specification with
the following operations: (i) insert(k, v) checks whether a node with key k is already present
and, if so, returns false, otherwise it creates a node with key k and value v, links it to the graph
(making it reachable from the root) and returns true; (ii) delete(k) checks whether a node with
key k is already present and, if so, unlinks the node from the graph (making it unreachable from
the root) and returns true, otherwise it returns false; (iii) find(k) returns the pointer to the node
with key k or false if no such node is found.

Traversals. For each operation op ∈ {insert(k, v), delete(k), find(k)}k∈N,v∈V , each search struc-
ture is parameterized by a (possibly randomized) traverse function τop. Given the last visited node
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a and the DAG of already visited nodes Gop, the traverse function τop returns a new node b to be
visited, i.e., accessed to get its key and the list of descendants, or ∅ to indicate that the search is
complete.

Find, insert and delete operations. Intuitively, the traverse function is used by the operation
op to explore the search structure and, when the function returns ∅, the sub-DAG Gop explored
so far contains enough information for operation op to complete.

If op = find(k), Gop either contains a node with key k or ensures that the whole graph does not
contain k. As we discuss below, in sorted search structures, such as sorted linked-lists or skiplists,
we can stop as soon as all outgoing edges in Gop belong to nodes with keys k′ ≥ k. Indeed, the
remaining nodes can only contain keys greater than k, so Gop contains enough information for op
to complete.

An operation op = insert(k, v), is characterized by an insert function µ(k,v) that, given a DAG
G and a new node 〈k, v〉 /∈ G, returns the set of edges from nodes of G to 〈k, v〉 and from 〈k, v〉
to nodes of G so that the resulting graph is a DAG containing 〈k, v〉 and respects PG.

An operation op = delete(k), is characterized by a delete function νk that, given a DAG G,
gives the set of edges to be removed and a set of edges to be added in G so that the resulting
graph is a DAG that respects PG.

Sequential implementations. We make the following natural assumptions on the sequential
implementation of a search structure: (i) Traverse-update: Every operation op starts with the
read-only traverse phase followed with a write-only update phase. The traverse phase of an
operation op with parameter k completes at the latest when for the visited nodes Gop contains
the k-relevant graph. The update phase of a find(k) operation is empty; (ii) Proper traversals
and updates: For all DAGs Gop and nodes a ∈ Gop, the traverse function τop(a,Gop) returns b
such that (a, b) ∈ G. The update phase of an insert(k) or delete(k) operation modifies outgoing
edges of k-relevant nodes; (iii) Non-triviality : There exist a key k and a state G such that (1) G
contains no node with key k, (2) If G′ is the state resulting after applying insert(k, v) to G, then
there is exactly one edge (a, b) in G′ such that b has key k, and (3) the shortest path in G′ from
the root to a is of length at least 2.

The non-triviality property says that in some cases the read-phase may detect the presence
of a given key only at the last step of a traverse-phase. Moreover, it excludes the pathological
DAGs in which all the nodes are always reachable in one hop from the root. Moreover, the
traverse-update property and the fact that keys are natural numbers implies that every traverse
phase eventually terminates. Indeed, there can be only finitely many vertices pointing to a node
with a given key, thus, eventually a traverse operation explores enough nodes to be sure that no
node with a given key can be found.

Examples of search data structures. In Figure 2, we describe few data structures in D. A
sorted linked list maintains a single path, starting at the root sentinel node and ending at a tail
sentinel node, and any traversal with parameter k simply follows the path until a node with key
k′ ≥ k is located. The traverse function for all operations follows the only path possible in the
graph until the two relevant nodes are located.

A skiplist [27] of n nodes is organized as a series of O(log n) sorted linked lists, each specifying
shortcuts of certain length. The bottom-level list contains all the nodes, each of the higher-level
lists contains a sublist of the lower-level list. A traversal starts with the top-level list having the
longest “hops” and goes to lower lists with smaller hops as the node with smallest key k′ ≥ k get
closer.

A binary search tree represents data items in the form of a binary tree. Every node in the
tree stores a key-value pair, and the left descendant of a non-leaf node with key k roots a subtree
storing all nodes with keys less than k, while the right descendant roots a subtree storing all nodes
with keys greater than k. Note that, for simplicity, we do not consider rebalancing operations
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used by balanced trees for maintaining the desired bounds on the traverse complexity. Though
crucial in practice, the rebalancing operations are not important for our comparative analysis of
concurrency properties of synchronization techniques.

Non-serializable concurrency. There is a straightforward LSL implementation of any data
structure in D in which updates (inserts and deletes) acquire a lock on the root node and are
thus sequential. Moreover, they take exclusive locks on the set of nodes they are about to modify
(k-relevant sets for operations with parameter k).

A find operation uses hand-over-hand shared locking [29]: at each moment of time, the op-
eration holds shared locks on all outgoing edges for the currently visited node a. To visit a new
node b (recall that b must be a descendant of a), it acquires shared locks on the new node’s
descendants and then releases the shared lock on a. Note that just before a find(k) operation
returns the result, it holds shared locks on the k-relevant set.

This way updates always take place sequentially, in the order of their acquisitions of the root
lock. A find(k) operation is linearized at any point of its execution when it holds shared locks on
the k-relevant set. Concurrent operations that do not contend on the same locks can be arbitrarily
ordered in a linearization.

The resulting HOH-find implementation is described in Algorithm 1. The fact that the oper-
ations acquire (starvation-free) locks in the order they traverse the directed acyclic graph implies:

Theorem 1. HOH-find is a starvation-free LSL implementation of a search structure.

As we show in Section 5, the implementation is however not (safe-strict) serializable.

5 Pessimism vs. serializable optimism

In this section, we show that, with respect to search structures, pessimistic locking and op-
timistic synchronization providing safe-strict serializability are incomparable, once we focus on
LS-linearizable implementations.

5.1 Classes P and SM

A synchronization technique is a set of concurrent implementations. We define below a specific
optimistic synchronization technique and then a specific pessimistic one.

SM: serializable optimistic. Let α denote the execution of a concurrent implementation and
ops(α), the set of operations each of which performs at least one event in α. Let αk denote the
prefix of α up to the last event of operation πk. Let Cseq(α) denote the set of subsequences of
α that consist of all the events of operations that are complete in α. We say that α is strictly
serializable if there exists a legal sequential execution α′ equivalent to a sequence in σ ∈ Cseq(α)
such that →σ⊆→α′ .

This paper focuses on optimistic implementations that are strictly serializable and whose
operations (even aborted or incomplete) observes correct (serial) behavior. More precisely, an
execution α is safe-strict serializable if (1) α is strictly serializable, and (2) for each operation
πk, there exists a legal sequential execution α′ = π0 · · ·πi · πk and σ ∈ Cseq(αk) such that
{π0, · · · , πi} ⊆ ops(σ) and ∀πm ∈ ops(α′) : α′|m = αk|m.

Safe-strict serializability captures nicely both local serializability and linearizability. If we
transform a sequential implementation IS of a type τ into a safe-strict serializable concurrent
one, we obtain an LSL implementation of (IS , τ). Thus, the following lemma is immediate.

Lemma 2. Let I be a safe-strict serializable implementation of (IS, τ). Then, I is LS-linearizable
with respect to (IS, τ).
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R(r)R(X1)

R(r)R(X1)R(X2)

insert(1) false

insert(2) false

{1,2,3}

(a) σ

R(r)R(X1)W (r)

R(r)R(X1)W (r)

insert(1) true

insert(2) true

{3}

(b) σ′

Figure 3: (a) a history of integer set (implemented as linked list or binary search tree) exporting schedule
σ, with initial state {1, 2, 3} (r denotes the root node); (b) a history exporting a problematic schedule σ′,
with initial state {3}, which should be accepted by any I ∈ P if it accepts σ

Indeed, we make sure that completed operations witness the same execution of IS , and every
operation that returned ⊥ is consistent with some execution of IS based on previously completed
operations. Formally, SM denotes the set of optimistic, safe-strict serializable LSL implementa-
tions.

P: deadlock-free pessimistic. Assuming that no process stops taking steps of its algorithm
in the middle of a high-level operation, at least one of the concurrent operations return a matching
response [22]. Note that P includes implementations that are not necessarily safe-strict serializ-
able.

5.2 Suboptimality of pessimistic implementations

We show now that for any search structure, there exists a schedule that is rejected by any pes-
simistic implementation, but accepted by certain optimistic strictly serializable ones. To prove
this claim, we derive a safe-strict serializable schedule that cannot be accepted by any imple-
mentation in P using the non-triviality property of search structures. It turns out that we can
schedule the traverse phases of two insert(k) operations in parallel until they are about to check
if a node with key k is in the set or not. If it is, both operations may safely return false (schedule
σ). However, if the node is not in the set, in a pessimistic implementation, both operations would
have to modify outgoing edges of the same node a and, if we want to provide local serializability,
both return true, violating linearizability (schedule σ′).

In contrast, an optimistic implementation may simply abort one of the two operations in case
of such a conflict, by accepting the (correct) schedule σ and rejecting the (incorrect) schedule σ′.

Proof intuition. We first provide an intuition of our results in the context of the integer
set implemented as a sorted linked list or binary search tree. The set type is a special case of the
dictionary which stores a set of integer values, initially empty, and exports operations insert(v),
remove(v), find(v); v ∈ Z. The update operations, insert(v) and remove(v), return a boolean
response, true if and only if v is absent (for insert(v)) or present (for remove(v)) in the set. After
insert(v) is complete, v is present in the set, and after remove(v) is complete, v is absent in the
set. The find(v) operation returns a boolean, true if and only if v is present in the set.

An example of schedules σ and σ′ of the set is given in Figure 3. We show that the schedule
σ depicted in Figure 3(a) is not accepted by any implementation in P. Suppose the contrary
and let σ be exported by an execution α. Here α starts with three sequential insert operations
with parameters 1, 2, and 3. The resulting “state” of the set is {1, 2, 3}, where value i ∈ {1, 2, 3}
is stored in node Xi. Suppose, by contradiction, that some I ∈ P accepts σ. We show that I
then accepts the schedule σ′ depicted in Figure 3(b), which starts with a sequential execution
of insert(3) storing value 3 in node X1. We can further extend σ′ with a complete find(1) (by
deadlock-freedom of P) that will return false (the node inserted to the list by insert(1) is lost)—a
contradiction since I is linearizable with respect to set.

Due to space consraints, the formal proof is moved to Appendix C.

Theorem 3. Any abstraction in D has a strictly serializable schedule that is not accepted by any
implementation in P, but accepted by an implementation in SM.
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5.3 Suboptimality of serializable optimism

We show below that for any search structure, there exists a schedule that is rejected by any
serializable implementation but accepted by a certain pessimistic one (HOH-find, to be concrete).

Proof intuition. We first illustrate the proof in the context of the integer set. Consider
a schedule σ0 of a concurrent set implementation depicted in Figure 1. We assume here that
the set initial state is {1, 3, 4}. Operation find(5) is concurrent, first with operation insert(2) and
then with operation insert(5). The history is not serializable: insert(5) sees the effect of insert(2)
because R(X1) by insert(5) returns the value of X1 that is updated by insert(2) and thus should
be serialized after it. But find(5) misses node with value 2 in the set, but must read the value
of X4 that is updated by insert(5) to perform the read of X5, i.e., the node created by insert(5).
Thus, σ0 is not (safe-strict) serializable. This history though is LSL since each of the three local
histories is consistent with some sequential history of the integer set. However, there exists an
execution of our HOH-find implementation that exports σ0 since there is no read-write conflict
on any two consecutive nodes accessed.

To extend the above idea to any search structure, we use the non-triviality property of data
structures in D. There exist a state G′ in which there is exactly one edge (a, b) in G′ such that
b has key k. We schedule a opf = find(k) operation concurrently with two consecutive delete
operations: the first one, opd1, deletes one of the nodes explored by opf before it reaches a (such
a node exists by the non-triviality property), and the second one, opd2 deletes the node with key
k in G′. We make sure that opf is not affected by opd1 (observes an update to some node c in the
graph) but is affected by opd2 (does not observe b in the graph). The resulting schedule is not
strictly serialializable (though linearizable). But our HOH-find implementation in P will accept
it.

Theorem 4. For any abstraction in D ∈ D, there exists an implementation in P that accepts a
non-strictly serializable schedule.

Since any strictly serializable optimistic implementation only produces strictly serializable
executions, from Theorem 4 we deduce that there is a schedule accepted by a pessimistic algorithm
that no strictly serializable optimistic one can accept. Therefore, Theorems 3 and 4 imply that,
when applied to search structures and in terms of concurrency, the strictly serializable optimistic
approach is incomparable with pessimistic locking. As a corollary, none of these two techniques
can be concurrency-optimal.

6 Related work

Sets of accepted schedules are commonly used as a metric of concurrency provided by a shared
memory implementation. For static database transactions, Kung and Papadimitriou [22] acknowl-
edge that this metric may have “practical significance, if the schedulers in question have relatively
small scheduling times as compared with waiting and execution times”. Herlihy [18] implicitly
considers a synchronization technique as highly concurrent, namely optimal, if no other technique
accepts more schedules. By contrast, we focus here on a dynamic model where the scheduler
cannot use the prior knowledge of all the shared addresses to be accessed.

Gramoli et al. [11, 12] defined a concurrency metric, the input acceptance, as the ability of a TM
to commit classes of input patterns of memory accesses without violating conflict-serializability.
Guerraoui et al. [14] defined the notion of permissiveness as the ability for a TM to abort a
transaction only if committing it would violate consistency. In contrast with these definitions,
our framework for analyzing concurrency is independent of the synchronization technique. David
et al. [6] consider that the closer the throughput of a concurrent algorithm is to that of its
(inconsistent) sequential variant, the more concurrent the algorithm. In contrast, the formalism
proposed in our paper allows for relating concurrency properties of various correct concurrent
algorithms.
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Our definition of search data structures is based on the paper by Chaudhri and Hadzilacos [4]
who studied them in the context of dynamic databases. Safe-strict serializable implementations
(SM) require that every transaction (even aborted and incomplete) observes “correct” serial
behavior. It is weaker than popular TM correctness conditions like opacity [15] and its relaxations
like TMS1 [7] and VWC [24]. Unlike TMS1, we do not require the local serial executions to always
respect the real-time order among transactions.

7 Concluding remarks

In this paper, we presented a formalism for reasoning about the relative power of optimistic and
pessimistic synchronization techniques in exploiting concurrency in search structures. We expect
our formalism to have practical impact as the search structures are among the most commonly
used concurrent data structures, including trees, linked lists, skip lists that implement various
abstractions ranging from key-value stores to sets and multi-sets.

Our results on the relative concurrency of P and SM imply that none of these synchronization
techniques might enable an optimally-concurrent algorithm. Of course, we do not claim that our
concurrency metric necessarily captures efficiency, as it does not account for other factors, like
cache sizes, cache coherence protocols, or computational costs of validating a schedule, which may
also affect performance on multi-core architectures. In [13] we already described a concurrency-
optimal implementation of the linked-list set abstraction that combines the advantages of P,
namely the semantics awareness, with the advantages of SM, namely the ability to restart op-
erations in case of conflicts. We recently observed empirically that this optimality can result in
higher performance than state-of-the-art algorithms [17, 16, 25]. Therefore, our findings motivate
the search for concurrency-optimal algorithms. This study not only improves our understanding
of designing concurrent data structures, but might lead to more efficient implementations.
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1: Shared variables:
2: G, initially root B Shared DAG

3: find(k):
4: G ← ∅; a← {root}
5: a.lock-shared()
6: while a 6= ∅ do
7: ∀(a, b) ∈ G: b.lock-shared()
8: ∀(a, b) ∈ G: G← G ∪ (a, b) B Explore new edges
9: last ← a

10: a← τfind(k)(a,G)
11: ∀(last , b) ∈ G, b 6= a: b.unlock-shared()
12: last .unlock-shared()

13: if G contains a node with key k then
14: return true
15: else
16: return false

17: insert(k, v):
18: root .lock()
19: G ← ∅; a← {root}
20: while a 6= ∅ do
21: ∀(a, b) ∈ G: G← G ∪ (a, b) B Explore new edges
22: last ← a
23: a← τinsert(k,v)(a,G)
24: ∀(last , b) ∈ G,
25: if G contains no node with key k then
26: a← create-node(k, v)
27: ∀b such that ∃(b, c) ∈ µk(G, a), b.lock()
28: G ← G ∪ µ(k,v)(G, a) B Link a to G
29: ∀b such that ∃(b, c) ∈ µk(G, a), b.unlock()
30: root .unlock()
31: return true
32: else
33: root .unlock()
34: return false

35: delete(k):
36: root .lock()
37: G ← ∅; a← {root}
38: while a 6= ∅ do
39: ∀(a, b) ∈ G: G← G ∪ (a, b) B Explore new edges
40: last ← a
41: a← τdelete(k)(a,G)
42: ∀(last , b) ∈ G,
43: if G contains node a with key k then
44: remove a and all edges to/from a from G
45: ∀b such that ∃(b, c) ∈ νk(G, a), b.lock()
46: G ← G ∪ νk(G, a) B Shortcut edges
47: ∀b such that ∃(b, c) ∈ νk(G, a), b.unlock()
48: root .unlock()
49: return true
50: else
51: root .unlock()
52: return false

Algorithm 1: Abstract HOH-find implementation of a search structure defined by (τop, µinsert(k,v),
νdelete(k)), op ∈ {insert(k, v), delete(k),find(k)}, k ∈ N, v ∈ V .

A LS-linearizability is compositional

We define the composition of two distinct object types τ1 and τ2 as a type τ1×τ2 = (Φ,Γ, Q, q0, δ)
as follows: Φ = Φ1 ∪ Φ2, Γ = Γ1 ∪ Γ2,

1 Q = Q1 ×Q2, q0 = (q01, q02), and δ ⊆ Q× Φ×Q× Γ is
such that ((q1, q2), π, (q

′
1q
′
2), r) ∈ δ if and only if for i ∈ {1, 2}, if π ∈ Φi then (qi, π, q

′
i, r) ∈ δi ∧

q3−i = q′3−i.
Every sequential implementation IS of an object O1×O2 of a composed type τ1×τ2 naturally

induces two sequential implementations IS1 and IS2 of objects O1 and O2, respectively. Now a
correctness criterion Ψ is compositional if for every history H on an object composition O1×O2,
if Ψ holds for H|Oi with respect to ISi, for i ∈ {1, 2}, then Ψ holds for H with respect to
IS = IS1 × IS2. Here, H|Oi denotes the subsequence of H consisting of events on Oi.

Theorem 5. LS-linearizability is compositional.

Proof. Let H, a history on O1 × O2, be LS-linearizable with respect to IS . Let each H|Oi,
i ∈ {1, 2}, be LS-linearizable with respect to ISi. Without loss of generality, we assume that
H is complete (if H is incomplete, we consider any completion of it containing LS-linearizable
completions of H|O1 and H|O2).

Let H̃ be a completion of the high-level history corresponding to H such that H̃|O1 and H̃|O2

are linearizable with respect to τ1 and τ2, respectively. Since linearizability is compositional [23,
21], H̃ is linearizable with respect to τ1 × τ2.

1Here we treat each τi as a distinct type by adding index i to all elements of Φi, Γi, and Qi.
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Now let, for each operation π, S1
π and S2

π be any two sequential histories of IS1 and IS2 such
that H|π|Oj = Sjπ|π, for j ∈ {1, 2} (since H|O1 and H|O2 are LS-linearizable such histories exist).

We construct a sequential history Sπ by interleaving events of S1
π and S2

π so that Sπ|Oj = Sjπ,

j ∈ {1, 2}. Since each Sjπ acts on a distinct component Oj of O1×O2, every such Sπ is a sequential
history of IS . We pick one Sπ that respects the local history H|π, which is possible, since H|π is
consistent with both S1|π and S2|π.

Thus, for each π, we obtain a history of IS that agrees with H|π. Moreover, the high-level
history of H is linearizable. Thus, H is LS-linearizable with respect to IS .

B Non-serializable concurrency

Theorem 1. The HOH-find algorithm is a starvation-free LSL implementation of a search struc-
ture.

Proof. Take any execution E of the algorithm. The subsequence of E consisting of the events
of update operations is serializable (and, thus, locally serializable). Since a find(k) operation
protects its visited node and all its outgoing edges with a shared lock and a concurrent update
with a key protect their k-relevant sets with an exclusive lock, find(k) observes the effects of
updates as though they took place in a sequential execution—thus local serializability.

Let H be the history of E. To construct a linearization of H, we start with a sequential
history S that orders all update operations in H in the order in which they acquire locks on the
root. By construction, S is legal. A find(k) operation that returns true can only reach a node if a
node with key k was reachable from the root at some point during its interval. Similarly, if find(k)
operation returns false, then it would only fail to reach a node if it was made unreachable from
the root at some point during its interval. Thus, every successful (resp., unsuccessful) find(k)
operation op can be inserted in S after the latest update operation that does not succeed in the
real-time order in E and after which a node k is reachable (resp., unreachable). By construction,
the resulting sequential history is legal.

C Pessimism vs. serializable optimism

Theorem 3. Any abstraction in D has a strictly serializable schedule that is not accepted by any
implementation in P, but accepted by an implementation in SM.

Proof. Consider the key k and the states G and G′ satisfying the conditions of the non-triviality
property.

Consider the schedule that begins with a serial sequence of operations bringing the search
to state G (executed by a single process). Then schedule the traverse phases of two identical
insert(k, v) operations executed by new (not yet participating) processes p1 and p2 concurrently
so that they perform identical steps (assuming that, if they take randomized steps, their coin
tosses return the same values). Such an execution E exists, since the traverse phases are read-
only. But if we allow both insert operations to proceed (by deadlock-freedom), we obtain an
execution that is not LS-linearizable: both operations update the data structure which can only
happen in a successful insert. But, by the sequential specification of D, since node with key k
belongs to G, at least one of the two inserts must fail. Therefore, a pessimistic implementation,
since it is not allowed to abort an operation, cannot accept the corresponding schedule σ.

Now consider the serial sequence of operations bringing D to state G′ (executed by a single
process) and extend it with traverse phases of two concurrent insert(k, v) operations executed by
new processes p1 and p2. The two traverse phases produce an execution E′ which is indistinguish-
able to p1 and p2 from E up to their last read operations. Thus, if a pessimistic implementation
accepts the corresponding schedule σ, it must also accept σ′, violating LS-linearizability.
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Note, however, that an extension of E′ in which both inserts complete by returning false is
LS-linearizable. Moreover, any progressive (e.g., using progressive opaque transactional memory)
optimistic strictly serializable implementation using will accept σ′.

Theorem 4. For any abstraction in D ∈ D, there exists an implementation in P that accepts a
non-strictly serializable schedule.

Proof. Consider the HOH-find implementation described in Algorithm 1. Take the key k and the
states G and G′ satisfying the conditions of the non-triviality property.

Now we consider the following execution. Let opf = find(k) be applied to an execution
resulting in G′ (that contains a node with key k) and run opf until it reads the only node
a = (k′, v′) in G that points to a node b = (k, v) in state G′. Note that since Rk(G) = Rk(G

′),
the operation cannot distinguish the execution from than one starting with G.

The non-triviality property requires that the shortest path from the root to k to a in Rk(G)
is of length at least two. Thus, the set of nodes explored by opf passed through at least one
node c = (k′′, v′′) in addition to a. Now we schedule two complete delete operations executed
by another process: first delc = delete(k′′) which removes c, followed by delb = delete(k) which
removes b. Now we wake up opf and let it read a, find out that no node with key k is reachable,
and return false

Suppose, by contradiction, that the resulting execution is strictly serializable. Since opf has
witnessed the presence of some node c on the path from the root to a in the DAG, opf must
precede delc in any serializaton. Now delb affected the response of opf , it must precede opf in any
serialization. Finally, delc precedes delb in the real-time order and, thus must precede delb in any
serialization. The resulting cycle implies a contradiction.
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