
Asynchronous Coordination Under Preferences
and Constraints∗

Armando Castañeda1, Pierre Fraigniaud2, Eli Gafni3, Sergio
Rajsbaum1, and Matthieu Roy4

1 Instituto de Matemáticas, UNAM, Mexico.
2 CNRS and University Paris Diderot, France.
3 Computer Science Department, UCLA, USA.
4 LAAS, CNRS and University of Toulouse, France.

Abstract
Adaptive renaming can be viewed as a coordination task involving a set of asynchronous agents,
each aiming at grabbing a single resource out of a set of resources totally ordered by their desirabil-
ity. Similarly, musical chairs is also defined as a coordination task involving a set of asynchronous
agents, each aiming at picking one of a set of available resources, where every agent comes with
an a priori preference for some resource. We foresee instances in which some combinations of
resources are allowed, while others are disallowed. We model these constraints, i.e., the restric-
tions on the ability to use some combinations of resources, as an undirected graph whose nodes
represent the resources, and an edge between two resources indicates that these two resources
cannot be used simultaneously. In other words, the sets of resources that are allowed are those
which form independent sets in the graph. E.g., renaming and musical chairs are specific cases
where the graph is stable (i.e., it the empty graph containing no edges).

As for musical chairs, we assume that each agent comes with an a priori preference for some
resource. If an agent’s preference is not in conflict with the preferences of the other agents, then
this preference can be grabbed by the agent. Otherwise, the agents must coordinate to resolve
their conflicts, and potentially choose non preferred resources. We investigate the following
problem: given a graph, what is the maximum number of agents that can be accommodated
subject to non-altruistic behaviors of early arriving agents?

We entirely solve this problem under the restriction that agents which cannot grab their
preferred resources must then choose a resource among the nodes of a predefined independent
set. However, the general case, where agents which cannot grab their preferred resource are
then free to choose any resource, is shown to be far more complex. In particular, just for cyclic
constraints, the problem is surprisingly difficult. Indeed, we show that, intriguingly, the natural
algorithm inspired from optimal solutions to adaptive renaming or musical chairs is sub-optimal
for cycles, but proven to be at most 1 to the optimal. The main message of this paper is that
finding optimal solutions to the coordination with constraints and preferences task requires to
design “dynamic” algorithms, that is, algorithms of a completely different nature than the “static”
algorithms used for, e.g., renaming.

1998 ACM Subject Classification D.1.3 Concurrent Programming (Distributed programming);
F.2.2 Nonnumerical Algorithms and Problems.

Keywords and phrases Adaptative renaming, resource allocation, asynchronous computing.

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

∗ The 1st and 4th authors are supported by UNAM-PAPIIT. The 4th author also received supports from
ECOS-CONACYT and LAISLA. The 2nd author received support from the ANR project DISPLEXITY,
and from the INRIA project GANG. The 5th author is supported by CNRS PICS DACOR.

© Armando Castañeda, Pierre Fraigniaud, Eli Gafni, Sergio Rajsbaum, and Matthieu Roy;
licensed under Creative Commons License CC-BY

Conference title on which this volume is based on.
Editors: Billy Editor and Bill Editors; pp. 1–15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.xxx.yyy.p
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Asynchronous Coordination Under Preferences and Constraints

1 Introduction

1.1 Context and objective

In distributed computing, several tasks have their adaptive versions in which the quality
of the solution must depend only on the number of processes that participate in a given
execution, and not on the total number of processes that could be involved in this task. A
typical example of an adaptive task is adaptive renaming [4]. In renaming, each process is
aiming at acquiring a name taken from a small range of integers [1, r], under the constraint
that all acquired names must be pairwise distinct. The quality of a renaming algorithm is
judged based on the range r of names, the smaller the better. In adaptive renaming, r must
depend only on the number k of participating processes. In the asynchronous setting with
crash-prone processes and read/write registers, the optimal value for the range is known to
be r = 2k − 1 [5, 13].

Interestingly, adaptive renaming can also be viewed as a task by interpreting the integers
1, . . . , r as a total order on the names, where name i is preferred to name j whenever
i < j. Hence, adaptive renaming can be viewed as an abstraction of the problem in which
asynchronous agents are competing for resources totally ordered by their desirability. In
other words, adaptive renaming is an abstraction of a problem of coordination between
agents under preferences. Coordination between agents under preferences has been recently
investigated in [2, 3] where the musical chairs game has been formally defined and solved.
In this game, a set of players (modeling the agents) must coordinate so that each player
eventually picks one of the available chairs (modeling the resources). Each player initially
comes with an a priori preference for one chair. In absence of conflict with other players, the
player can pick the desired chair, otherwise the conflicting players must coordinate so that
they pick different chairs. It is proved that the smallest number r of chairs for which musical
chairs with k players has a solution is r = 2k − 1.

We foresee that neither adaptive renaming nor musical chairs fully capture typical scenarios
of agents competing for resources. Indeed, both tasks only capture scenarios in which the
constraint is that no two agents can acquire the same resource. In practice, resources may
not be independent, and the literature on scheduling, partitioning, resource allocation, etc.
(see, e.g., [6, 7, 11, 15, 16]) provide several examples of problems in which resources are
inter-dependent, causing some resource a not being allowed to be used simultaneously with
resource b. That is, using one resource disables others. In this paper, we consider the case in
which constraints are modeled as an indirected graph whose nodes are resources, and every
edge {a, b} indicates that resources a and b cannot be both simultaneously acquired, i.e.,
acquiring a node disables all its neighbors. In other words, the sets of resources that are
allowed are those which form independent sets in the graphs. In this framework, renaming as
well as musical chairs correspond to the case where the graph of constraints is a stable one
(i.e., a graph with no edges). We thus address an extension of renaming and musical chairs,
targeting an abstraction of a problem of coordination between agents under constraints.

Our objective is to understand the power and limitation of coordination between agents
competing for interdependent resources. We are focussing on a scenario inspired from
musical chairs in which a resource is a priori assigned to each agent, and the agents have to
coordinate between them so that to eventually acquire pairwise non conflicting resources. In
particular, if the initial assignment forms an independent set, then the agents do not have to
do anything. Alternatively, if they are initially assigned conflicting resources, then they have
to spread out and coordinate themselves so that they eventually acquire a set of resources
that form an independent set. In other words, each agent comes with an a priori preference

A. Castañeda, P. Fraigniaud, E. Gafni, S. Rajsbaum, and M. Roy 3

for some resource — these preferences for the resources do not need to be different. If an
agent’s preference is not in conflict with the preference of another agent, then it can grab its
preference. Otherwise, this agent must choose another resource.

The coordination task between agents under preferences and constraints is thus defined as
follows. Given an n-node graph G = (V,E) modeling the constraints between the resources,
an input is a multiset M of k elements in V representing the preferences of k processes
p1, . . . , pk modeling the k agents. Outputs are independent sets I = {u1, . . . , uk} in G, of
size k representing the fact that process pi acquires ui, for i = 1, . . . , k. The literature on
renaming [5] and musical chair [3] taught us that, in an asynchronous system in which the
processes are subject to crash failures, the task is not solvable for k larger than some bound,
even for the stable graph G (the value of the bound on k for the stable graph is roughly half
the number of nodes of the graph). We are interested in the impact of the constraints on this
bound. That is, given a graph G, we are interested in the largest k for which the coordination
with constraints and preferences task in G is solvable for every preference multiset M of
size at most k. We focus on asynchronous systems in which an arbitrarily large number of
processes are subject to crash failures. Each process has its own private registers, and the
processes communicate via read/write accesses to a shared memory.

1.2 Our results
We first focus on the problem for the n-node path Pn because it enables to prove a lower
bound on the size of Hamiltonian graphs for which the coordination with constraints and
preferences task is solvable. Interestingly, this lower bound is almost twice as large as the
2k − 1 bound without constraints resulting from renaming or musical chairs. Specifically, we
establish the following:

I Theorem 1. Let k be a positive integer. The smallest integer n for which the coordination
with constraints and preferences task in Pn is solvable for k processes satisfies n = 4k − 3.
As a consequence, if the coordination with constraints and preferences task in an n-node
Hamiltonian graph G is solvable for k processes then n ≥ 4k − 3.

The lower bound on n is based on a reduction to impossibility results for musical chairs,
i.e., renaming with initial preferences. The upper bound on n comes from a wait-free
algorithm, inspired from an optimal adaptive renaming algorithm, whose main lines are: (1)
fix a maximum independent set I in Pn, (2) index the vertices of I from 1 to 2k − 1, and (3)
run an optimal (adaptive) renaming algorithm on these indexes.

From this preliminary result on Pn, one may think that solving the coordination with
constraints and preferences task in a graph G boils down to classical renaming once a
maximum independent set in G is fixed. We show that this is not the case. In fact, even for
an instance as simple as the n-node ring Cn, the problem becomes highly non trivial.

I Theorem 2. Let k be a positive integer. The smallest n for which the coordination with
constraints and preferences task in Cn is solvable for k processes satisfies 4k−3 ≤ n ≤ 4k−2.

The lower bound is a consequence of Theorem 1 since Cn is Hamiltonian. A quite
intriguing fact is that the wait-free algorithm derived from an adaptation of an optimal
algorithm for classical renaming run on a maximum independent set of Cn does not match
the lower bound, and is off by an additive factor +1. In fact, we prove that the true answer
is probably the lower bound 4k − 3, which is shown to be tight for k = 2 and 3 agents, using
ad hoc algorithms that are radically different from renaming algorithm.

4 Asynchronous Coordination Under Preferences and Constraints

We believe that the difference of 1 between the lower and upper bounds for Cn is certainly
not anecdotal, but is the witness of a profound phenomenon that is not yet understood,
with potential impact on classical renaming and musical chairs. The main outcome of this
paper is probably the observation that “static” algorithms, i.e., algorithms based on fixed
precomputed positions in the graph of constraints, might be sub-optimal by allocating less
resources than the optimal. Our optimal ad hoc algorithms for coordinating two or three
processes in the ring are not static, and the set of allocated resources output by these
algorithms can form any independent set. The design of optimal “dynamic” (i.e., non static)
algorithms for solving the coordination with constraints and preferences task appears to be a
challenge, even in the specific case of the cycle Cn.

The enormous difficulty for asynchronous crash-prone processes to coordinate under
constraints and preferences, even in graphs with arbitrarily large independent sets, is also
illustrated by the case of the complete bipartite graph Kx,y with n = x+ y nodes. We show
that, although Kx,y has very large independent sets (of size at least min{x, y}), processes
cannot coordinate at all in this graph.

I Theorem 3. Let x, y be positive integers. Coordination with constraints and preferences
in the complete bipartite graph Kx,y is unsolvable for more than one process.

Finally, on the positive side, given any graph G, we can design an static algorithm alg
solving the coordination with constraints and preferences task in G. alg is based on the
novel notion of k-admissible independent sets, which may have its interest on its own: given
G = (V,E), an independent set I of G is k-admissible if for everyW ⊆ V of size at most k−1,
we have |I \N [W]| ≥ |I ∩W |+ 1 where N [W] denotes the set of nodes at distance at most 1
from a node in W . We prove that among static algorithms, alg is optimal, which completely
closes the problem for static algorithms.

I Theorem 4. Let G be a graph, and k be a positive integer. Let I be a k-admissible
independent set in G. Then, alg instantiated with I solves the coordination with constraints
and preferences task in G with k processes. Moreover, if G has no (k + 1)-admissible
independent set, then no static algorithms can solve the coordination with constraints and
preferences task in G with more than k processes.

1.3 Related Work
Since its introduction, the renaming problem has been extensively studied (see for example [5,
10, 19]). It was initially introduced as a non-adaptive problem in which processes just need
to pick distinct output names in the space [1, . . . ,M], where M is on function only on the
total number of processes that might participate [4]. Several algorithms were proposed
(e.g. [4, 9, 14]), and, as far as we know, all those initial algorithms are adaptive. Then the
adaptive version of renaming was coined. The study of lower bounds for renaming have
inspired new developments in topology techniques (see [17] for a detailed description). As
explained above, the variant of renaming that is closest to this paper is the adaptive renaming
version. This is the version we use to solve the coordination with constraints and preferences
task on a graph with no edges.

Musical chairs [2, 3] is a coordination problem on a stable graph in which each process
starts with a initial vertex (chair) and processes are required to decide distinct vertices
(chairs). The problem is studied in a model where the only communication between processes
is an indication when two processes propose the same vertex. It has been shown that k
processes can solve the problem only if the stable graph has at least 2k − 1 vertices. It has
been also shown that musical chairs and adaptive renaming are equivalent problems.

A. Castañeda, P. Fraigniaud, E. Gafni, S. Rajsbaum, and M. Roy 5

Interestingly, the coordination with constraints and preferences is also related to mobile
computing [12], where mobile entities (modeling physical robots, software agents, insects, etc.)
must cooperate in order to solve tasks such as rendezvous, gathering, exploration, patrolling,
etc. In particular, in the asynchronous look-compute-move model of mobile computation,
the “look” operation is very similar to a “snapshot” operation in shared memory, and the
“move” operation is very similar to the “write” operation. The major differences between
the wait-free model of distributed computation and the look-compute-move model of mobile
computation are (1) the presence of failures in the former, and (2) the fact that agents are
moving in an anonymous graph in the latter.

2 Model and examples

2.1 Computational model
We consider the standard asynchronous wait-free read/write model with k processes, p1, . . . , pk
[5, 19]. Processes are asynchronous, communicate by writing and reading from a reliable
shared memory, and any set of processes may crash. We assume, without loss of generality,
that processes can read the whole shared memory in a single atomic snapshot [1].

Problems in the wait-free model are usually defined as tasks, where processes get input
values, and decide after a bounded number of operations on output values, such that the
decided values represent a valid configuration associated to the initial values of the execution
for this task.

Without loss of generality, we can assume that algorithms solving tasks are in normal
form, that is, are of the form of a loop consisting of (1) writing to the shared memory the
local state of the process, (2) taking a snapshot, and (3) performing some local computation.
The loop is executed until the process returns an output (i.e., decides).

2.2 Coordination with Constraints and Preferences (CCP)
The task coordination with constraints and preferences (or CCP for short) is instantiated
by a fixed n-node graph G = (V,E). The graph is modeling the constraints. It is supposed
to be simple, i.e., without loops and multiple edges, but does not need to be connected.
Each process pi gets as input one vertex u ∈ V , called its initial private preference, and
must eventually decide on a vertex v ∈ V . It is required that the decided vertices form an
independent set of G, that is, no two processes decide the same vertex, and no two decided
vertices belong to the same edge. It is also required that if the initial preferences form an
independent set, then each process must decide its initial preference (enforcing the fact that
processes cannot discard their preferences).

We are interested in computing, for every n-node graph G, the largest k such that CCP
in G is wait-free solvable for k processes. Note that an algorithm solving CCP in G is given
the full description of G a priori. Hence, there are no issues such as, e.g., breaking symmetry
between nodes of G, even if G is vertex-transitive. (In particular, the nodes of G might be
given labels from 1 to n, a priori, in a specific order which may facilitate the task for the
processes).

2.3 Examples and Basic Observations
CCP is trivially solvable for one process in every graph, by selecting its initial preference
as output vertex. Also, CCP is trivially not solvable in G for k processes if k exceeds the
size of a maximum independent set. In fact, CCP is not solvable in G for k processes if k

6 Asynchronous Coordination Under Preferences and Constraints

exceeds the size of the smallest maximal independent set. Indeed, let I = {u1, . . . , u`} be
a smallest maximal independent set in G, and assume that ` processes p1, . . . , p` are given
preferences in I (ui to pi for i = 1, . . . , `). In a wait-free execution in which only those `
processes participate, they must decide I. If another process p`+1 “wakes up” after the `
processes have decided, there is no more room for p`+1 to acquire a vertex, because I is
maximal. This holds even if there exists another independent set I ′ larger than I, since the
first ` processes have already terminated.

The following result is a direct consequence of [3] as Musical Chairs is exactly our problem
on the stable graph.

I Proposition 5. Let k be a positive integer. The smallest integer n for which the co-
ordination with constraints and preferences task in the n-node stable graph is solvable for k
processes satisfies n = 2k − 1.

Also, we have the following observation.

I Proposition 6. Let G = (V,E) be a graph, and G′ = (V,E′) with E′ ⊆ E be a subgraph
of G. If the coordination with constraints and preferences task is solvable for k processes in
G, then it is solvable for k processes in G′.

As a consequence of the above two propositions, we get a general lower bound on the size
of graphs in which the coordination with constraints and preferences task is solvable for k
processes.

I Corollary 7. Let G be an n-node graph. If the coordination with constraints and preferences
task in G is solvable for k processes then 2k − 1 ≤ n.

3 The Case of Cyclic Constraints

Our first results concern simple non-trivial sets of constraints, namely the cases of the n-node
paths and cycles, respectively denoted Pn and Cn. The case of the path is entirely solved by
the following results, which establish Theorem 1:

I Proposition 8. Let k be a positive integer. The smallest integer n for which the coordin-
ation with constraints and preferences task in the n-node path is solvable for k processes
satisfies n = 4k − 3.

Proof. Let us assume, for the purpose of contradiction, that there is an algorithm A solving
CCP in the n-node path for k processes with n = 4k − 4. Such a path has a maximum
matching M of size 2k − 2. A guarantees that, for every edge of M , at most one process
acquires an extremity of that edge. A can be used as a subroutine to solve CCP on a stable
graph of size 2k − 2, as we show below.

We assume that the n-path is oriented from left to right and hence for each edge in M
there is a left vertex and a right vertex (thus, in the path, not two left (right) vertices are
adjacent). Also, each vertex v of the stable graph of size 2k − 2 is mapped to a unique edge
f(v) in M . To solve CCP on the stable graph, each process pi with initial preference v,
invokes A with the left vertex of f(v) and decides f−1(e), where e is the edge inM containing
the vertex that A outputs to pi The resulting algorithm A solves CCP on the stable graph
of size 2k − 2 because if processes start with distinct vertices, then all of them invoke A
with left vertices and hence, each process decide its initial preference. If processes start with
conflicting initial preferences, then A outputs vertices that belong to distinct edges in M .
This is a contradiction with Proposition 5 because M is of size 2k − 2.

A. Castañeda, P. Fraigniaud, E. Gafni, S. Rajsbaum, and M. Roy 7

We now describe an algorithm solving CCP in the n-node path for k processes with
n = 4k − 3. The algorithm is based on a maximum independent set I of size 2k − 1 in
P4k−3. That is, the nodes of P4k−3 are labeled off line as (v1, v2, v3, . . . , v4k−3), and we define
I = {v1, v3, v5, . . . , v4k−3}. Essentially, the algorithm runs the textbook renaming algorithm
of [5] on I, adapted to handle initial preferences. Indeed, selecting a node w /∈ I may block
two positions in I (the two neighboring nodes of w). Nevertheless, there is still enough room
to perform renaming, and hence to solve CCP. Indeed, let N [w] be the closed neighborhood
of w in Pn, i.e., the at most three nodes at distance at most 1 from w, and, for a set of nodes
W , let N [W] = ∪w∈WN [w]. In classical renaming, if W is the multiset of currently chosen
names, there remain at least 2k − 1− |W | ≥ k available names to choose from. In the path,
if W is the multiset of currently chosen nodes, there are only |I \N [W]| available nodes in I
to choose from, and this number of available nodes can be less than k. However, the crucial
observation is that |I \N [W]|| > |I ∩W | in the path P4k−3, for any set of nodes W of size
at most k − 1. Hence, there are more free nodes in I than occupied nodes in I, and thus the
idea is to perform the ranking of the renaming algorithm only on processes sitting on the
occupied nodes of I. Since |I \N [W]|| > |I ∩W |, this ranking is valid, that is, systematically
provides a position in I \N [W]. Termination follows from classical arguments by assuming,
by way of contradiction, that some processes do not terminate, and then by considering the
process p with lowest ID that does not terminate. Eventually, the rank r of p will remain
forever the same, and no other processes that do not terminate will conflict with the rth
node in the subset of nodes in I that are not conflicting with terminated processes. At this
point, process p terminates. J

As a consequence of this result combined with Proposition 6, we get a general lower
bound on the size of Hamiltonian graphs in which the coordination with constraints and
preferences task is solvable for k processes. Interestingly, this bound is roughly twice as big
as the bound for arbitrary graphs (cf. Corollary 7).

I Corollary 9. Let G be an n-node Hamiltonian graph. If the coordination with constraints
and preferences task in G is solvable for k processes then 4k − 3 ≤ n.

The case of Pn has attracted our interest for it enables deriving bounds for Hamiltonian
graphs. The case of the cycle Cn may seem to behave quite similarly as Pn. Surprisingly,
this is not the case, as the wraparound constraint yields an interesting phenomenon, namely
“static” solutions inspired from renaming algorithms such as the ones for the stable graph
and the path are not anymore optimal in term of number of processes, and are off by an
additive factor +1 from the optimal. More precisely, we show the following, which establishes
Theorem 2:

I Proposition 10. Let k be a positive integer. The smallest integer n for which the
coordination with constraints and preferences task in Cn is solvable for k processes satisfies
4k − 3 ≤ n ≤ 4k − 2.

Proof. The lower bound follows directly from Corollary 9. The upper bound is directly
derived from the algorithm in the proof of Proposition 8 by fixing a maximum independent
set of size 2k − 1 in the cycle C4k−2. The correctness of the algorithm follows from the same
arguments as for the path P4k−3. J

Interestingly, the lower bound 4k − 3 is most probably the right answer, and not the
upper bound 4k − 2. At least, this is the case for small numbers of processes:

8 Asynchronous Coordination Under Preferences and Constraints

decidedecide

smallest (p
1
p
1) lar

ge
st

(p
2p2)

p1, p2

p1 p2

p1 p2

Figure 1 CCP algorithm for two processes in C5: rules when two processes are executing

I Proposition 11. The smallest integer n for which the coordination with constraints and
preferences task in Cn is solvable for k processes satisfies n = 4k − 3 for k = 2 and k = 3.

Proof. The nodes of C4k−3 are sequentially labeled offline as v1, v2, . . . , v4k−3. This labeling
induces a clockwise direction (increasing labels) and a counterclockwise direction.

The algorithm for two processes in C5 is depicted on Figure 1, which represents the
snapshot of a process, and the action to take (represented as arrows) based on this snapshot
when 2 processes participate. There are three cases, depending on whether the two processes
are currently occupying nodes at distance 0, 1, or 2. (Of course, if the snapshot reveals that
the process is alone, then it decides the node that it currently occupies, i.e., its preferred
node). If the snapshot reveals that the two processes occupy the same node, then the action
depends on the ID: going clockwise for the process with smallest ID, and counterclockwise
otherwise. If the snapshot reveals that the two processes occupy two neighboring nodes, then
the action is: going away from the other node. Finally, if the snapshot reveals that the two
processes occupy two nodes at distance 2, then the action is to decide the currently occupied
node. One can check that this asynchronous algorithm terminates, and wait-free solves CCP.

In the appendix, we provide a similar algorithm for three processes in C9. J

From these two cases, we conjecture that the smallest cycle Cn enabling to solve CCP
is n = 4k − 3, for all k ≥ 2. If this is correct, it means that optimality requires processes
to coordinate in a more complex way than they do for renaming, in order to spread out
optimally in the graph of constraints, and eventually occupy a large number of nodes. The
independent set they will eventually agree on cannot be decided a priori, but the processes
must agree on line in order to eventually decide an independent set that fits their initial
preferences, the constraints and the uncertainty resulting for asynchrony and failures.

4 A Generic Algorithm

The algorithms inspired by the original algorithm of [5] used in the proofs of Theorems 1
and 2 to establish the upper bounds on the smallest integer n for which the coordination
with constraints and preferences task in the n-node path and in the n-node cycle are static
in the sense that they are aiming at deciding within a fixed independent set. More precisely:

I Definition 12. Let G be a graph, and I be an independent set in G. An algorithm A
solving the coordination with constraints and preferences task in G is static with respect to I
if, for every execution of A, and for every process p, if p does not decide its initial input,
then it decides a vertex in I.

To establish Theorem 4, we present a generic static algorithm to solve CCP on every
graph G = (V,E), and prove that this algorithm is the best possible static algorithm in
the sense that it maximizes the number k of processes for which CCP is solvable in G.

A. Castañeda, P. Fraigniaud, E. Gafni, S. Rajsbaum, and M. Roy 9

The generic algorithm is instantiated with an a priori ordered independent set I. That is,
I = {w1, . . . , w|I|}, and this ordering of the nodes in I is know a priori to every process. The
processes proceed in a sequence of (asynchronous) rounds. At each round, every process pi
proposes a current vertex denoted curi (the first proposal is the input ui of processes pi).
Then, pi checks whether there is a conflict with other proposals. In absence of conflict, pi
decides its current proposal curi. If there is a conflict, pi computes a new proposal in I, and
repeats. Hence, in particular, if a process sees no conflict in its initial proposal, then it stays
there. Otherwise it will try a new proposal in I. The new proposal of pi is computed within
the “free space” that is defined as the maximal subset of I such that there is no conflict with
other processes’ proposals.

Algorithm 1 is the pseudocode of the generic algorithm. The algorithm uses a shared
array view, accessed with write and snapshot operations, where each entry is initially ⊥.
For convenience, it is easier to consider the array view as a multiset of nodes. The local
variable curi stores the current proposal of process pi. For a set W ⊆ V , we denote by N [W]
the closed neighborhood of W , that is, for w ∈ V , N [w] = {w} ∪ {v ∈ V : {v, w} ∈ E}, and
N [W] = ∪w∈WN [w].

Algorithm 1 G = (V,E) is a graph, and I is an ordered independent set in G. Code for pi.
function IndependentSet(ui ∈ V : initial preference of pi)
1: curi ← ui

2: loop
3: write(curi)
4: snapshot memory to get view = {curj1 , . . . , curjr} . multiset of r elements, for some r

5: view′ ← view \ {curi} . remove one occurence of curi from view
6: if view′ ∩N [curi] = ∅ then . check for conflicts
7: return curi . no conflict ⇒ decide curi

8: else . conflict detected ⇒ compute a new position
9: free← I \N [view′] . rule out conflicting vertices from I

10: `← |{s : curjs ∈ I and js < i}|+ 1 . ranking on the currently occupied vertices of I

11: curi ← `th element in free . try the `th free node for the next round
12: end if
13: end loop

Note that if the initial preferences of participating processes are distinct and form
an independent set, then Algorithm 1 guarantees that each process decides on its initial
preference. Note also that if two processes decide on vertices v1, v2, then v1 6= v2 and
{v1, v2} 6∈ E. However, for Algorithm 1 to function appropriately, we use it for a specific
kind of independent sets, namely admissible independent sets, defined hereafter (see Figure 2
for an illustration):
I Definition 13. Let k be a positive integer, and G = (V,E) be a graph. An independent set I
of G is k-admissible if for every W ⊆ V of size at most k−1, we have |I \N [W]| ≥ |I∩W |+1.

Notice that any k-admissible independent set I satisfies |I| ≥ 2k − 1 (instantiate Defin-
ition 13 with W ⊆ I of size k − 1). To establish Theorem 4, we first prove the following
result.
I Proposition 14. Let G be a graph, and k be a positive integer. Let I be a k-admissible
independent set in G. Then, Algorithm 1 instantiated with I solves the coordination with
constraints and preferences task in G with k processes.

Proof. We have seen that the safety conditions (i.e., respect of the preferences, and take
decisions on an independent set) are satisfied. It just remains to show that the algorithm

10 Asynchronous Coordination Under Preferences and Constraints

I \ N [W]

I \ W

I

W

N [W]

Figure 2 To be k-admissible, I must satisfy |I \N [W]| ≥ |I ∩W |+ 1 for every W of size ≤ k− 1.

is valid (i.e., whenever a process detects a conflict on Line 6, it is able to compute a new
consistent preference), and terminate. We first show validity.
I Claim 1. For any process that is about to execute Line 11, |free| ≥ `.

Consider a process pi that is about to execute Line 11. Such a process pi must have
detected a conflict Line 6. Let view be the snapshot of pi associated with this conflict, and
W = view′. When pi is about to execute Line 11, we have free = I \N [W]. As there are
at most k participating processes, it follows that |W | < k. Since I is k-admissible, we have
|I \N [W]| ≥ |W ∩ I|+1, which implies |free| ≥ |W ∩ I|+1. Moreover, pi’s ranking computed
in line 10 is at most |W ∩ I|+ 1 because W does not contain pi’s preference, i.e., one ignores
the nodes not in I when ranking. Hence |free| ≥ `, and thus the algorithm is valid.
I Claim 2. Algorithm 1 terminates.

Assume, for the sake of contradiction, that there is a run α in which some processes take
an infinite number of steps without deciding a vertex. In this execution, let P be the set
of all processes taking infinitely many steps, and let p ∈ P be the process with minimum
ID in P . Consider a suffix α′ of α in which (1) all processes that do not run forever have
stopped, and (2) all processes in P have already tried once to get a vertex in I, namely, they
have executed Line 11 at least once. Note that such a suffix exists because every process
that takes an infinite number of steps in α will see an infinite number of conflicts, and thus
will eventually always execute Line 3 with its current vertex in I.

In α′, the rank of p is fixed because, from there on, the set of processes that occupy
vertices in I is fixed. Let r be the rank of p among the processes of α′ with proposals in
I, and let good be the set of vertices in I that do not conflict with preferences of stopped
processes in α′. Eventually, there are no processes in P that are proposing one of the first
r − 1 elements of good. Indeed, the rank of every process in P is at least r, and when a
process q ∈ P takes a snapshot, the set free that it computes satisfies free ⊆ good. Thus, q
proposes the x-th element in free, where x ≥ r. Hence, this element cannot be one of the
first r − 1 elements in good.

It follows that, in α′, as soon as all running processes have seen each other, and have
written at least twice, when these processes compute free, the first r elements are all elements
of good, and only p will try to get the r-th element in free. When it does, it detects no
conflict. Thus p can terminate the algorithm on Line 3, which yields to a contradiction. J

We now show the second part of Theorem 4, that is, Algorithm 1 is optimal on the number
of processes, among static CCP algorithms. This is established thanks to the following result.

I Proposition 15. Let G be a graph, k be a positive integer, and assume that G has no
(k + 1)-admissible independent set. Then, no static algorithm can solve the coordination with
constraints and preferences task in G with more than k processes.

The proof is based on the following claim, which is an interesting consequence of the
Wait-free Computability Theorem of [18]. A concise proof is presented in appendix.

A. Castañeda, P. Fraigniaud, E. Gafni, S. Rajsbaum, and M. Roy 11

I Claim 3. If there is a k-process CCP algorithm for G, then there exists a k-process
CCP algorithm for G in which whenever a process sees only itself in its first snapshot, it
immediately decides.

Proof. For contradiction, assume there is a static CCP algorithm A on G for k+ 1 processes,
with respect to a non (k + 1)-admissible independent set I. By Claim 5, we can assume that
if a process sees only itself in its first snapshot, then it decides its initial value (recall that A
can be assumed to be in normal form). Since I is not (k + 1)-admissible, there exists a set
W ⊆ V with at most k vertices such that |I \N [W]| < |W ∩ I|+ 1.

I Claim 4. W ∩ I 6= ∅.

Proof of Claim 4: Suppose W ∩ I is empty. It follows that |W ∩ I| + 1 = 1, and thus
|I \N [W]| = 0, i.e., I \N [W] is empty as well. Thus I ∩N [W] = I. Now, let us consider an
execution α of A in which processes p1, . . . , p|W | start with preferences for distinct vertices in
W , and just write their input in shared memory, i.e., they only perform one write operation
in shared memory. Then, consider any extension β of α in which a process q starts with a
preference to a vertex in I, runs alone (the pi’s from α do not take steps), and decides. Note
that such a process exists since |W | ≤ k and A is for k + 1 processes. Since A is static with
respect to I, q decides a vertex v ∈ I. Let v′ ∈ W that is adjacent to v, whose existence
is guaranteed by I ∩N [W] = I, and let q′ be the process in α with input v′. Let α′ be a
reordering of α in which q′ executes solo, decides, then all other processes in α do their write
operation. q′ sees only itself in its first snapshot, and will thus decide its input, from Claim 5.
As q cannot distinguish α from α′, β is also a valid extension of α′. In α′β, process q decides
v. This is a contradiction, since q′ decides v′ in this execution, which is in conflict with v.
Thus, W ∩ I 6= ∅, which completes the proof of Claim 4. J

Let ρ = |W ∩ I|. By Claim 4, ρ > 0. We have |I \ N [W]| < |W ∩ I| + 1 = ρ + 1,
and thus |(I \ N [W]) ∪ (W ∩ I)| < 2ρ − 1. Let us consider an execution α of A in which
processes p1, . . . , p|W\I| start with preferences for distinct vertices in W \ I, and they just
write their input in the shared memory. Using the same indistinguishability argument as in
the proof of Claim 4, we can show that that there is no extension of α in which a process
q /∈ {p1, . . . , p|W\I|} decides a vertex in I ∩ N [W]. Thus, in every extension of α, such a
process q decides its initial preference vertex, or a vertex in (I \N [W])∪ (W ∩ I). Let us then
consider processes q1, . . . , qρ+1, all distinct from p1, . . . , p|W\I| (note that these processes
exist because |W | ≤ k). In every extension of α in which q1, . . . , qρ+1 start with preferences
in (I \ N [W]) ∪ (W ∩ I), and these processes decide, they necessarily decide vertices in
(I \N [W]) ∪ (W ∩ I). This implies that |(I \N [W]) ∪ (W ∩ I)| ≥ ρ+ 1.

Now, from A and execution α, we construct a p-process algorithm A′ that solves CCP in
the stable graph with too few vertices as follows. In A′, the shared memory has the state in
α, and each process qi, 1 ≤ i ≤ ρ+ 1, follows the same code as in A. To see that A′ is correct,
note that (1) if processes start with distinct vertices of (I \N [W])∪(W ∩I), then each process
decides its input, since A is correct, and (2) if processes start with inputs in conflict, then
they decide distinct vertices in (I \N [W]) ∪ (W ∩ I), as shown before. Now, A′ solves CCP
for ρ+ 1 processes over the stable graph with vertex set (I \N [W])∪ (W ∩ I) (and no edges),
which is impossible since this set has at most 2ρ− 2 vertices, and, by Proposition 5, CCP is
unsolvable for so few vertices. Therefore, assuming the existence of A yields a contradiction,
which completes the proof. J

The following is an interesting consequence of Proposition 15 to the case of CCP in cycles.

12 Asynchronous Coordination Under Preferences and Constraints

I Corollary 16. If A is a wait-free algorithm solving the coordination with constraints and
preferences task in C4k−3 for k processes then A cannot be static.

A natural guess is that CCP can be solved in G for a number of processes that grows
with the size of the smallest maximal independent set in G. Having this in mind, Theorem 4
may appear to be rather weak. Indeed, for instance, in complete bipartite graphs Kx,y =
(X ∪ Y,X × Y), with x = |X|, and y = |Y |, there are no 2-admissible independent sets.
Thus our static algorithm, although optimal among static algorithms, cannot do better than
solving CCP in Kx,y for just one process! The truth is that our algorithm is not to be blamed.
Indeed, the intuition that the number of processes that can be accommodated should grow
with the size of the smallest maximal independent set is wrong, and any algorithm, not just
static ones, cannot do better that solving CCP in Kx,y for a single process only, as shown
below (which establishes Theorem 3).

I Proposition 17. Let x, y be positive integers. Coordination with constraints and prefer-
ences in Kx,y is unsolvable for more than one process.

Proof. Recall that, in the s-set agreement task, each process proposes a value, and each
correct process decides a proposed value so that the number of distinct decisions is at most s.
We show that if algorithm A solves CCP in Kx,y for k processes (hence either x or y is at
least k), then there is an algorithm B that solves dk2 e-set agreement for k processes – yet,
it is known that s-set agreement on k processes is unsolvable for any 1 ≤ s ≤ k − 1 and
k ≥ 2 (see [8, 18, 20]), a contradiction. In Kx,y = (X ∪ Y,X × Y), X and Y are the unique
two maximal independent sets. We say that processes p1, . . . , pd k

2 e
belong to X, and the

remaining processes, pd k
2 e+1, . . . , pk, belong to Y , in the following sense: to the processes

p1, . . . , pd k
2 e
, we assign pairwise distinct vertices vi ∈ X as preferences, i = 1, . . . , dk2 e, and

to the processes pd k
2 e+1, . . . , pk, we assign pairwise distinct vertices vi ∈ Y as preferences,

i = dk2 e+ 1, . . . , k. We use algorithm A solving CCP on this instance for construction an
algorithm B solving dk2 e-set agreement.

A process pi that belongs to X first announces its preference (considered as its proposal),
and then invokes A using vi ∈ X as its input. If pi gets assigned to a vertex of X in A,
then it decides vi in B, otherwise it decides any vertex vj ∈ Y with j ∈ {dk2 e+ 1, . . . , k}. A
process pi that belongs to Y proceeds similarly. That is, if pi gets assigned to a vertex of
Y in A, then it decides its preference vi in B, otherwise it decides any vertex vj ∈ X with
j ∈ {1, . . . , dk2 e}. Since A is correct, and since there are no independent sets in Kx,y that
include vertices of both X and Y simultaneously, it follows that if a process gets assigned to
a vertex of X (resp., Y) in A, then every other process gets assigned to a vertex of X (resp.,
Y) as well. Therefore, in every execution of B, processes either decide the preferences of the
processes that belongs to X, or the preferences of the processes that belongs to Y , hence at
most dk2 e proposals are decided in B. J

5 Conclusion

We have considered a generalization of renaming in graphs, in which deciding a node forbids
others to use neighboring nodes. We proved a lower bound for Hamiltonian graphs, and
provided optimal algorithms for 2 processes on a pentagon, and 3 processes on a nonagon.
For the case where processes agree beforehand on a given maximal independent set, we
designed optimal static algorithms for solving this problem. Static algorithms are however
sub-optimal, as illustrated in the case of the rings. The design of optimal dynamic algorithms

A. Castañeda, P. Fraigniaud, E. Gafni, S. Rajsbaum, and M. Roy 13

for solving the coordination with preferences and constraints tasks in graphs remains an
open problem, even for rings.

References
1 Yehuda Afek, Hagit Attiya, Danny Dolev, Eli Gafni, Michael Merritt, and Nir Shavit.

Atomic snapshots of shared memory. J. ACM, 40(4):873–890, September 1993.
2 Yehuda Afek, Yakov Babichenko, Uriel Feige, Eli Gafni, Nati Linial, and Benny Sudakov.

Oblivious collaboration. In David Peleg, editor, Distributed Computing, volume 6950 of
Lecture Notes in Computer Science, pages 489–504. Springer Berlin Heidelberg, 2011.

3 Yehuda Afek, Yakov Babichenko, Uriel Feige, Eli Gafni, Nati Linial, and Benny Sudakov.
Musical chairs. SIAM Journal on Discrete Mathematics, 28(3):1578–1600, 2014.

4 H. Attiya, A. Bar-Noy, D. Dolev, D. Peleg, and R. Reischuk. Renaming in an asynchronous
environment. Journal of the ACM, 37(3):524–548, 1990.

5 Hagit Attiya and Jennifer Welch. Distributed Computing Fundamentals, Simulations, and
Advanced Topics, Second Edition. John Wiley and Sons, Inc., 2004.

6 Brenda S. Baker and Edward G. Coffman Jr. Mutual exclusion scheduling. Theor. Comput.
Sci., 162(2):225–243, 1996.

7 Hans L. Bodlaender and Klaus Jansen. Restrictions of graph partition problems. part I.
Theor. Comput. Sci., 148(1):93–109, 1995.

8 Elizabeth Borowsky and Eli Gafni. Generalized FLP impossibility result for t-resilient
asynchronous computations. In STOC ’93: Proceedings of the twenty-fifth annual ACM
symposium on Theory of computing, pages 91–100, New York, NY, USA, 1993. ACM.

9 Elizabeth Borowsky and Eli Gafni. Immediate atomic snapshots and fast renaming. In
Proceedings of the Twelfth Annual ACM Symposium on Principles of Distributed Computing,
PODC ’93, pages 41–51, New York, NY, USA, 1993. ACM.

10 Armando Castañeda, Sergio Rajsbaum, and Michel Raynal. The renaming problem in
shared memory systems: An introduction. Comput. Sci. Rev., 5(3):229–251, August 2011.

11 Guy Even, Magnús M. Halldórsson, Lotem Kaplan, and Dana Ron. Scheduling with con-
flicts: online and offline algorithms. J. Scheduling, 12(2):199–224, 2009.

12 Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro. Distributed Computing by Ob-
livious Mobile Robots. Synthesis Lectures on Distributed Computing Theory. Morgan &
Claypool Publishers, 2012.

13 Eli Gafni, Achour Mostéfaoui, Michel Raynal, and Corentin Travers. From adaptive renam-
ing to set agreement. Theoretical Computer Science, 410(14):1328 – 1335, 2009. Structural
Information and Communication Complexity (SIROCCO 2007).

14 Eli Gafni and Sergio Rajsbaum. Recursion in distributed computing. In Shlomi Dolev,
Jorge Cobb, Michael Fischer, and Moti Yung, editors, Stabilization, Safety, and Security
of Distributed Systems, volume 6366 of Lecture Notes in Computer Science, pages 362–376.
Springer Berlin Heidelberg, 2010.

15 M. R. Garey and Ronald L. Graham. Bounds for multiprocessor scheduling with resource
constraints. SIAM J. Comput., 4(2):187–200, 1975.

16 Magnús M. Halldórsson, Guy Kortsarz, Andrzej Proskurowski, Ravit Salman, Hadas Shach-
nai, and Jan Arne Telle. Multicoloring trees. Inf. Comput., 180(2):113–129, 2003.

17 Maurice Herlihy, Dmitry Kozlov, and Sergio Rajsbaum. Distributed Computing Through
Combinatorial Topology. Morgan Kaufmann, 2013.

18 Maurice Herlihy and Nir Shavit. The topological structure of asynchronous computability.
J. ACM, 46(6):858–923, 1999.

19 Michel Raynal. Concurrent Programming: Algorithms, Principles, and Foundations.
Springer, 2013.

14 Asynchronous Coordination Under Preferences and Constraints

Non-conflicting Non-conflicting

largest ID

smallest ID

largest ID smallest ID largest ID smallest ID

middle ID

Figure 3 CCP algorithm for three processes in C9 (code for resolving conflicts with 3 processes).

20 Michael Saks and Fotios Zaharoglou. Wait-Free k-Set Agreement is Impossible: The Topo-
logy of Public Knowledge. SIAM J. Comput., 29(5):1449–1483, 2000.

A Solving CCP for three processes in C9

We extend the algorithm for 2 processes in C5 (Figure 1) to three processes in C9. First, notice
that the 2-process algorithm is made of at most two phases: in a first phase, processes resolve
repeated vertices (leftmost picture of Figure 1), and in a second phase, once processes are
proposing distinct vertices, they propose non-conflicting vertices (center picture of Figure 1).
Our 3-process algorithm follows the same idea. In the algorithm, if only two processes
participate, they proceed as in the algorithm for C5. If three processes participate, a process
pi that gets a snapshot with three processes and a conflict with its preference proceeds as
follows:
1. if there is no vertex next to pi’s current vertex that is non-conflicting (in any direction)

then move to a middle non-conflicting vertex in the segment of non-conflicting vertices
(see the top row in Figure 3)

2. else move clockwise or counterclockwise, depending on the conflict pattern, with the
displacement depending on processes IDs’ ranking, when at least another process is
proposing pi’s vertex (see the bottom row in Figure 3).

The correctness of the algorithm follows from the observation that if three processes
participate, then eventually they propose distinct vertices and from that point on, eventually,
some process will consider itself as the “middle” process and is going to move far enough
from the other two.

A. Castañeda, P. Fraigniaud, E. Gafni, S. Rajsbaum, and M. Roy 15

B Proof of Claim 5

I Claim 5. If there is a k-process CCP algorithm for G, then there exists a k-process
CCP algorithm for G in which whenever a process sees only itself in its first snapshot, it
immediately decides.

Proof. The Asynchronous Computability Theorem ACT [18] states that a task is wait-free
read/write solvable if and only if there is a chromatic subdivision of the input complex of
the task (the simplicial complex represents all possible input configurations) with a coloring
that agrees with the specification of the task.

Assume there is a k-process CCP algorithm for G, then let S be such a chromatic
subdivision. Herlihy and Shavit proved that any chromatic subdivision can be approximated
by anM -th standard chromatic subdivision [18], for some big enoughM . ThisM -th standard
chromatic subdivision is crucial because it directly implies a wait-free read/write protocol
that solves the task that the coloring of S respects.

Now, the particular algorithms in the claim change the class of subdivisions we are dealing
with. These subdivisions are very similar to the M -th standard chromatic subdivision with
the difference that that after the 1-st standard chromatic subdivision, the corners of the
subdivision are not changed, while the rest of the simplexes are subdivided in the same
way. Let us call these subdivisions M -solo chromatic subdivisions. Considering this class of
subdivisions, in which the diameter of these subdivisions shrinks as M grows, we can observe
that, for a big enough M , say MS , the MS-solo chromatic subdivision approximates S. As
explained above, this MS-solo chromatic subdivision implies an algorithm that solves CCP
for k processes for G in which whenever a process sees only itself in its first snapshot, it
immediately decides. J

	Introduction
	Context and objective
	Our results
	Related Work

	Model and examples
	Computational model
	Coordination with Constraints and Preferences (CCP)
	Examples and Basic Observations

	The Case of Cyclic Constraints
	A Generic Algorithm
	Conclusion
	Solving CCP for three processes in C9
	Proof of Claim 5

