
An Approximation Algorithm for Path
Computation and Function Placement in SDNs

Guy Even1, Matthias Rost2, and Stefan Schmid3

1 School of Electrical Engineering
Tel Aviv University
Tel Aviv 6997801
Israel
guy@eng.tau.ac.il

2 Technische Universität Berlin
10587 Berlin
Germany
mrost@inet.tu-berlin.de

3 Department of Computer Science
Aalborg University
DK-9220 Aalborg
Denmark
schmiste@cs.aau.dk

Abstract
We consider the task of embedding multiple service requests in Software-Defined Networks
(SDNs), i.e. computing (combined) mappings of network functions on physical nodes and finding
routes to connect the mapped network functions. A single service request may either be fully
embedded or be rejected. The objective is to maximize the sum of benefits of the served requests,
while the solution must abide node and edge capacities.

We follow the framework suggested by Even et al. [5] for the specification of the network
functions and routing of requests via processing-and-routing graphs (PR-graphs): a request is
represented as a directed acyclic graph with the nodes representing network functions. Addition-
ally, a unique source and a unique sink node are given for each request, such that any source-sink
path represents a feasible chain of network functions to realize the service. This allows for example
to choose between different realizations of the same network function. Requests are attributed
with a global demand (e.g. specified in terms of bandwidth) and a benefit.

Our main result is a randomized approximation algorithm for path computation and function
placement with the following guarantee. Let m denote the number of links in the substrate
network, ε denote a parameter such that 0 < ε < 1, and opt∗ denote the maximum benefit that
can be attained by a fractional solution (one in which requests may be partly served and flow
may be split along multiple paths). Let cmin denote the minimum edge capacity, let dmax denote
the maximum demand, and let bmax denote the maximum benefit of a request. Let ∆max denote
an upper bound on the number of processing stages a request undergoes. If cmin/(∆max ·dmax) =
Ω((logm)/ε2), then with probability at least 1− 1

m−exp(−Ω(ε2·opt∗/(bmax·dmax))), the algorithm
computes a (1− ε)-approximate solution.

1998 ACM Subject Classification F.2 ANALYSIS OF ALGORITHMS AND PROBLEM COM-
PLEXITY

Keywords and phrases Approximation algorithms, linear programming, randomized rounding,
software defined networks, routing, throughput maximization.

2 Path Computation and Function Placement

1 Introduction

Software Defined Networks (SDNs) and Network Function Virtualization (NFV) have been
reinventing key issues in networking [7]. The key characteristics of these developments are:
(i) separation between the data plane and the control plane, (ii) specification of the network
control from a global view, (iii) introduction of network abstractions that provide a simple
networking model, and (iv) programmability and virtualization of network components.

In this paper we focus on an algorithmic problem that an orchestrator needs to solve in an
SDN+NFV setting, namely jointly optimizing the path computation and function placement
(PCFP) [5]: In modern networks, networking is not limited to forwarding packets from sources
to destinations. Requests can come in the form of flows (i.e., streams of packets from a
source node to a destination node with a specified packet rate) that must undergo processing
stages on their way to their destination. Examples of processing steps include: compression,
encryption, firewall validation, deep packet inspection, etc. The crystal ball of SDN+NFV is
the introduction of abstractions that allow one to specify, per request, requirements such
as processing stages, valid locations for each processing stage, and allowable sets of links
along which packets can be sent between processing stages. An important application for
such goals is supporting security requirements that stipulate that unencrypted packets do
not traverse untrusted links or reach untrusted nodes.

From an algorithmic point of view, the path computation and function placement problem
combines two different optimization problems. Path computation alone (i.e., the case of
pure packet forwarding without processing of packets) is an integral path packing problem.
Function mapping alone (i.e., the case in which packets only need to be processed but not
routed) is a load balancing problem.

To give a feeling of the problem, consider a special case of requests for streams, each of
which needs to undergo the same sequence of k processing stages denoted by w1, w2, . . . , wk.
This means that service of a request from si to ti is realized by a concatenation of k+1 paths:
si

p0
; v1

p1
; v2

p2
; · · · pk−1

; vk
pk
; ti, where processing stage wi takes place in node vi. Note

that the nodes v1, . . . , vk need not be distinct and the concatenated path p0 ◦ p1 ◦ · · · ◦ pk
need not be simple. A collection of allocations that serve a set of requests not only incurs a
forwarding load on the network elements, it also incurs a computational load on the nodes.
The computational load is induced by the need to perform the respective processing stages
for the requests.
Previous works. The opportunities introduced by the SDN/NFV paradigm, in terms of
novel services which can be deployed quickly and on-demand, has inspired much research
over the last years [3, 4, 11, 12, 17]. The main focus of these works is usually on the system
aspects, while less attention has been given to the algorithmic challenges. Moreover, the
existing papers which do deal with the algorithmic challenges, often resort to heuristics or
non-polynomial algorithms. For example, in the seminal work on service chaining [17] as
well as in [9, 16, 18], mixed-integer programming is employed (and heuristics are sketched),
Hartert et al. [12] use constrained programming, and others propose fast heuristics without
approximation guarantees [1, 2], or ignore important aspects of the problem such as link
capacity constraints [8]. The online version is studied in [5] in which also a new standby/accept
service model is introduced, and in [8]. More generally, the problem of combined path
computation and function placement is closely related to the virtual network embedding
problem, for which many exponential-time and heuristic algorithms have been developed over
the last years [6]. Indeed, only recently a first approximation scheme based on randomized
rounding for the virtual network embedding problem was proposed in [15]. While the model

Even, Rost, and Schmid 3

is more general by allowing for cyclic request graphs, the proposed algorithms might violate
node and edge capacities by a logarithmic factor and is only applicable on a limited class of
request graphs.

Our starting point is the model of SDN requests presented in [5]. In this model, each
request is represented by a special graph, called a processing-and-route graph (pr-graph, in
short). The pr-graph represents both the routing requirement and the processing requirements
that the packets of the stream must undergo. We also build on the technique of graph
products for representing valid realizations of requests [5].

Raghavan [13] initiated the study of randomized rounding techniques for multi-commodity
flows, where the LP has two types of constraints: capacity constraints and demand constraints.
The joint capacity constraints are common to all the flows, while the demand constraints are
per request. Raghavan proves that randomized rounding succeeds with high probability if
the ratio of the minimum capacity to maximum demand is logarithmic.
Contribution and Techniques. To the best of our knowledge, we present the first
polynomial-time algorithm which comes with provable approximation guarantees for the
PCFP-problem, under reasonable assumptions (i.e., logarithmic capacity-to-demand ratio,
few processing stages per request, and sufficiently large optimal benefit). We begin by
formulating a fractional relaxation of the problem. The fractional relaxation consists of a
set of fractional single commodity flows, each over a different product graph. Each flow is
fractional in the sense that it may serve only part of a request and may split the flow among
multiple paths. We emphasize that the fractional flows do not constitute a multi-commodity
flow because they are over different graphs. The fractional problem is a general packing
LP [13]. Namely, the LP can be formulated in the form max{bT · x | A · x ≤ c,x ≥ 0},
where all the components of the vectors b, c and the matrix A are nonnegative. However,
this LP does not satisfy the logarithmic ratio required in Raghavan’s analysis of general
packing problems (due to demand constraints).

Although randomized rounding is very well known and appears in many textbooks and
papers, the version for the general packing problem appears only in half a page in the thesis
by Raghavan [13, p. 41]. A special case with unit demands and unit benefits appears in [10].
One of the contributions of this paper is a full description of the analysis of randomized
rounding for the case of multiple-commodity flows over different graphs with joint capacity
constraints.

2 Modeling Requests in SDN

We model SDN/NFV requests as process-and-route graphs (pr-graphs) [5]. The model is
quite general, and allows each request to have multiple sources and destinations, varying
bandwidth demands based on processing stages, task specific capacities, prohibited locations
of processing, and prohibited links for routing between processing stages, etc. We overview a
simplified version of this model to concisely define the problem of path computation and
function placement (PCFP).

2.1 The Substrate Network

The substrate network is a fixed network of servers and communication links. The network
is represented by a graph N = (V,E), where V is the set of nodes and E is the set of edges.
Nodes and edges have capacities. The capacity of an edge e is denoted by c(e), and the
capacity of a node v ∈ V is denoted by c(v). Let cmin denote the minimum capacity. We

4 Path Computation and Function Placement

note that the network is static and undirected (namely each edge represents a bidirectional
communication link), but may contain parallel edges.

2.2 Requests and pr-Graphs
Each request is specified by a tuple ri = (Gi, di, bi, Ui, si, ti), where the components are as
follows:

1. Gi = (Xi, Yi) is a directed (acyclic) graph called the process-and-route graph (pr-
graph). There is a single source (respectively, sink) that corresponds to the source
(resp. destination) of the request. We denote the source and sink nodes in Gi by si
and ti, respectively. The other vertices correspond to services or processing stages of
a request. The edges of the pr-graph are directed and indicate precedence relations
between pr-vertices. Any si-ti path in Gi represents a valid realization of request i.

2. The demand of ri is di and its benefit is bi. By scaling, we may assume that mini bi = 1.
3. Ui : Xi ∪ Yi → 2V ∪ 2E where (1) Ui(x) ⊆ V denotes a set of “allowed” nodes in the

substrate N that can perform service x, and (2) Ui(y) ⊆ E denotes the set of “allowed”
edges of the substrate N along which the routing segment that corresponds to y may be
routed.

Note that in the above definition the function Ui(x) returns a set of substrate locations on
which the function x ∈ Xi can be executed. This allows to model network function types: If
a substrate node v ∈ V represents a specific hardware appliance (e.g. a firewall), then this
node can only host this specific type of network function. Hence, if a virtualized network
function x ∈ Xi has the same type as v ∈ V , we include v in Ui(x) and exclude v from Ui(x)
otherwise.

Given this understanding of the restriction function Ui, pr-graphs allow to model the
selection of specific implementations of network functions. Assume e.g. that a request i is
given that shall connect v ∈ V to u ∈ V such that the traffic passes through a firewall. The
substrate network may offer two types of firewall implementations: a hardware-based (as
hardware appliance) and a software-based (as virtual machine). Using the definition of pr-
graphs, the selection of either of the choices can be modeled by setting Xi = {si, xhw, xsw, ti}
and Yi = {(si, xhw), (si, xsw), (xhw, ti), (xsw, ti)} and restricting Ui(xhw) to all the hardware
firewalls and Ui(xsw) to the set of all nodes that may host software firewalls. As any si-ti
path in Gi represents a valid realization of request i, a mapping of request i must select
any of the options to realize the request (cf. [16] for a general discussion on decomposition
opportunities).

We denote the maximum demand by any request as dmax and the maximum benefit of
any request as bmax.

2.3 The Product Network
In [5] the concept of product graphs was introduced and we shortly revisit the definition.
For each request ri, the product network pn(N, ri) is defined as follows. The node set of
pn(N, ri), denoted Vi, is defined as Vi , ∪y∈Yi

(V × {y}). We refer to the subset V × {y} as
the y-layer in the product graph. Note that there is a layer for every edge y in the pr-graph.
The edge set of pn(N, ri), denoted Ei, consists of two types of edges Ei = Ei,1 ∪Ei,2 defined
as follows.

1. Routing edges connect vertices in the same layer.

Ei,1 =
{(

(u, y), (v, y)
)
| y ∈ Yi, (u, v) ∈ Ui(y)

}
.

Even, Rost, and Schmid 5

2. Directed processing edges connect two copies of the same network vertex in different
layers.

Ei,2 = {((v, y), (v, y′)) | y, y′ ∈ Yi with y = (·, x), y′ = (x, ·) and v ∈ Ui(x)} .

To simplify the description of valid realizations, we add a super source ŝi and a super
sink t̂i to the respective product networks. The super source ŝi is connected to all vertices
(v, y) such that v ∈ Ui(si) and y emanates from si. Similarly, there is an edge to the super
sink t̂i from all vertices (v, y) such that v ∈ Ui(ti) and y enters ti.
Remarks. The following remarks may help clarify the definition of the product network.

1. Consider an edge y = (x1, x2) of a request. The y-layer in the product graph contains a
copy of the substrate to compute a route from the vertex that performs the x1 processing
to the vertex that performs the x2 processing.

2. Consider two edges y1 = (x1, x2) and y2 = (x2, x3) in the pr-graph. The only processing
edges between the y1-layer and the y2-layer are edges of the form (v, y1)→ (v, y2), where
v ∈ Ui(x2).

3. If we coalesce each layer of the pr-graph to a single vertex, then the resulting graph is
the line graph of the pr-graph.

2.4 Valid Realizations of SDN Requests

We use product graphs to define valid realizations of SDN requests. Consider a path p̃i in
the product graph pn(N, ri) that starts in the super source ŝi and ends in the super sink ŝi.
Such a path p̃i represents the routing of request ri from its origin to its destination and the
processing stages that it undergoes. The processing edges along p̃i represent nodes in which
processing stages of ri take place. The routing edges within each layer represent paths along
which the request is routed between processing stages. (The edges incident to the super
source and super sink are not important).

I Definition 1. A path p̃ in the product network pn(N, ri) that starts in the super source
and ends in the super sink is a valid realization of request ri.

2.5 The Path Computation and Function Placement Problem (PCFP)

Modeling SDN requests by product graphs helps in reducing SDN requests to path requests.
The translation of paths in the product graph back to paths in the substrate network is
called projection. This translation involves a loss due to multiple occurrences of the same
substrate resource along a path in the product graph. We define projection and multiplicity
before we present the formal definition of the PCFP-problem.
Projection of paths. Let p̃i denote a path in the product graph pn(N, ri) from the super
source to the super sink. The projection of p̃i to a path pi = π(p̃i) in the substrate network
N is simply the projection onto routing edges of p̃i. Namely, each routing edge ((u, y), (v, y))
in p̃i is projected to the edge (u, v) in the substrate. Hence, when projecting a path, we
ignore the processing edges and the edges incident to the super source and super sink. Note
that p = π(p̃i) may not be a simple path even if p̃i is simple.
Notation. The multiplicity of an edge or a vertex z in a path p is the number of times z
appears in the path. We denote the multiplicity of z in p by multiplicity(z, p).

6 Path Computation and Function Placement

Capacity Constraints. Let P̃ = {p̃i}i∈I′ denote a set of valid realizations for a subset of
requests {ri}i∈I′ with I ′ ⊆ I. The set P̃ satisfies the capacity constraints if∑

i∈I
di ·multiplicity(e, π(p̃i)) ≤ c(e), for every edge e ∈ E∑

i∈I
di ·multiplicity(v, π(p̃i)) ≤ c(v), for every vertex v ∈ V

Definition of the PCFP-problem. The input in the PCFP-problem consists of (1) a
substrate network N = (V,E) with vertex and edge capacities, and (2) a set of requests
{ri}i∈I . The goal is to compute valid realizations P̃ = {p̃i}i∈I′ for a subset I ′ ⊆ I such that:
(1) P̃ satisfies the capacity constraints, and (2) the benefit

∑
i∈I′ bi is maximum. We refer

to the requests ri such that i ∈ I ′ as the accepted requests; requests ri such that i ∈ I \ I ′
are referred to as rejected requests.

3 The Approximation Algorithm for PCFP

The approximation algorithm for the PCFP-problem is described in this section. It is a
variation of Raghavan’s randomized rounding algorithm for general packing problems [13,
Thm 4.7, p. 41] (in which the approximation ratio is 1

e −
√

2 lnn
ε·e·opt∗ provided that cmin

dmax
≥ lnn

ε).

3.1 Fractional Relaxation of the PCFP-problem
We now define the fractional relaxation of the PCFP-problem. Instead of assigning a valid
realization p̃i per accepted request ri, we assign a fractional single commodity flow f̃i in the
product graph pn(N, ri). The source of the flow f̃i is the super source ŝi. Similarly, the
destination of f̃i is the super sink t̂i. The demand of f̃i is di. Hence the demand constraint
is |f̃i| ≤ di.

The capacity constraints are accumulated across all requests’ flows. Formally,∑
i,y

f̃i((u, y), (v, y)) ≤ c(u, v)

∑
i,y,y′

f̃i((v, y), (v, y′)) ≤ c(v).

Hence, the cumulative load on the copies of substrate edge (u, v) ∈ E in the respective
pr-graphs is upper bounded by the original edge capacity c(u, v). Similarly, as the usage of
processing edges ((v, y), (v, y′)) in the pr-graphs denotes the processing on substrate node v,
the cumulative load is bounded by c(v).

The objective function of the LP relaxation is to maximize
∑
i bi · |f̃i|/di.

We emphasize that this fractional relaxation is not a classic multi-commodity flow. The
reason is that each flow f̃i is defined over a different product graph. However, the fractional
relaxation is a general packing LP.

3.2 The Algorithm
The algorithm uses a parameter 1 > ε > 0. The algorithm proceeds as follows.

1. Divide all the capacities by (1 + ε). Namely, c̃(e) = c(e)/(1 + ε) and c̃(v) = c(v)/(1 + ε).
2. Compute a maximum benefit fractional PCFP solution {f̃i}i.

Even, Rost, and Schmid 7

3. Apply the randomized rounding procedure independently to each flow f̃i over the product
network pn(N, ri) (See Appendix B for a description of the procedure). Let p̃i denote
the path in pn(N, ri) (if any) that is assigned to request ri by the randomized rounding
procedure. Let fi denote a flow of amount di along the projection π(p̃i). Note that each
fi is an unsplittable all-or-nothing flow. The projection of pi might not be a simple path
in the substrate, hence the flow fi(e) along the edge e can be a multiple of the demand
di.

3.3 Analysis of the algorithm
I Definition 2. The diameter of Gi is the length of a longest path in Gi from the source si
to the destination ti. We denote the diameter of Gi by ∆(Gi).

The diameter of Gi is well defined because Gi is acyclic for every request ri. In all applications
we are aware of, the diameter ∆(Gi) is bounded by a constant (i.e., e.g. less than 10).

Notation. Let ∆max , maxi∈I ∆(Gi) denote the maximum diameter of a request. Let cmin
denote the minimum edge capacity, and let dmax denote the maximum demand. Let opt∗
denote the maximum benefit achievable by a fractional PCFP solution (with respect to the
original capacities c(e) and c(v)). Let alg denote the solution computed by the algorithm.
Let B(S) denote the benefit of a solutions S. Define β(ε) , (1 + ε) ln(1 + ε)− ε.

Our goal is to prove the following theorem.1

I Theorem 3. Assume that cmin
∆max·dmax

≥ 4.2+ε
ε2 · (1 + ε) · ln |E| and ε ∈ (0, 1). Then,

Pr [alg does not satisfy the capacity constraints] ≤ 1
|E|

(1)

Pr
[
B(alg) < 1− ε

1 + ε
·B(opt∗)

]
≤ e−β(−ε)·B(opt∗)/((1+ε)·bmax·dmax). (2)

We remark in asymptotic terms, the theorem states that if cmin
∆max·dmax

= Ω(log |E|
ε2), then

alg satisfies the capacity constraints with probability 1−O(1/|E|) and attains a benefit of
(1−O(ε)) ·B(opt∗) with probability 1− exp(−Ω(ε2) ·B(opt∗)/(bmax · dmax)).

Proof. The proof is based on the fact that randomized rounding is applied to each flow f̃i
independently. Thus the congestion of an edge in alg is the sum of independent random
variables. The same holds for the B(alg). The proof proceeds by applying Chernoff bounds.

Proof of Eq. 1. For the sake of simplicity we assume that there are no vertex capacities
(i.e., c(v) = ∞). The proof is based on the Chernoff bound in Theorem 6. To apply the
bound, fix a substrate edge e ∈ E, where e = (u, v). Recall that the randomized rounding
procedure decides which requests are supplied. A supplied request ri is assigned a path p̃i
in the product network pn(N, ri). The path p̃i is the support of a single commodity flow
f ′i with flow amount |f ′i | = di. The projection of f ′i to the substrate network is denoted by
fi and its support is the projected path π(p̃i). The multiplicity of every edge in π(p̃i) is at
most ∆max. Hence, for every edge e, fi(e) is a multiple of di between 0 and ∆max · di.

1 We believe there is a typo in the analogous theorem for integral MCFs with unit demands and unit
benefits in [10, Thm 11.2, p. 452] and that a factor of ε−2 is missing in their lower bound on the
capacities.

8 Path Computation and Function Placement

Define the random variables Xi and the upper bounds µi on their expectation as follows
(recall that e = (u, v)).

Xi ,
fi(e)

∆max · dmax

µi ,
c̃(e)

∆max · dmax
·
∑
y f̃i((u, y), (v, y))∑
j,y f̃j((u, y), (v, y))

The conditions of Theorem 6 are satisfied for the following reasons. The random variables
Xi are independent and 0 ≤ Xi ≤ 1 because fi(e) ∈ {0, di, . . . ,∆max · di}. Also, by Claim 1
(see Page 12) and linearity of expectation,

E [Xi] =
∑
y f̃i((u, y), (v, y))
∆max · dmax

.

Since
∑
j,y f̃j((u, y), (v, y)) ≤ c̃(e), it follows that E [Xi] ≤ µi. Finally, µ ,

∑
i∈I µi =

c̃(e)/(∆max · dmax).
Let alg(e) denote the load incurred on the edge e by alg. Namely alg(e) ,

∑
i∈I fi(e).

Note that alg(e) ≥ (1 + ε) · c̃(e) iff∑
i∈I

Xi ≥ (1 + ε) · c̃(e)
∆max · dmax

= (1 + ε) · µ.

From Theorem 6 we conclude that:

Pr [alg(e) ≥ (1 + ε) · c̃(e)] = Pr
[∑
i∈I

Xi ≥ (1 + ε) · µ
]

≤ e−β(ε)·µ

= e−β(ε)·c̃(e)/(∆max·dmax)

By scaling of capacities, we have c(e) = (1 + ε) · c̃(e). By Fact 4, β(ε) ≥ 2ε2

4.2+ε . By the
assumption c̃(e)

∆maxdmax
≥ 4.2+ε

ε2 · ln |E|. We conclude that

Pr [alg(e) ≥ c(e)] ≤ 1
|E|2

.

Eq. 1 follows by applying a union bound over all the edges.
Proof of Eq. 2. The proof is based on the Chernoff bound stated in Theorem 7. To

apply the bound, let

Xi ,
bi · |fi|

bmax · dmax

µi ,
bi · |f̃i|

bmax · dmax
.

The conditions of Theorem 7 are satisfied for the following reasons. Since bi ≤ bmax and |fi| ≤
dmax, it follows that 0 ≤ Xi ≤ 1. Note that

∑
iXi = B(alg)/(bmax · dmax). By Corollary 1,

E [Xi] = µi. By linearity,
∑
i bi · |f̃i| = opt∗/(1 + ε) and µ ,

∑
i µi = B(opt∗)

(1+ε)bmax·dmax
. Hence,

Pr
[
B(alg) < 1− ε

1 + ε
·B(opt∗)

]
= Pr

[∑
i

Xi < (1− ε) · µ
]

≤ e−β(−ε)·µ

≤ e−β(−ε)·B(opt∗)/((1+ε)bmax·dmax),

Even, Rost, and Schmid 9

and the theorem holds.
J

3.4 Unit Benefits
In the case of unit benefits (i.e., all the benefits equal one and hence bmax = 1), Theorem 3
gives a fully polynomial randomized approximation scheme.

I Corollary 4. Suppose that bmax = 1. Under the premises of Theorem 3, with probability
1−O(1/Poly(|E|), the algorithm returns an all-or-nothing unsplittable multi-commodity flow
whose benefit is at least 1−O(ε) times the optimal benefit.

Proof. If B(opt∗) > cmin, then the large capacities assumption implies that B(opt∗)/(dmax ·
bmax) ≥ cmin/dmax ≥ ε−2 · ln |E|. This implies that that B(alg) ≥ (1−O(ε)) ·B(opt∗) with
probability at least 1− 1/poly(|E|). By adding the probabilities of the two possible failures
(i.e., violation of capacities and small benefit) and taking into account the prescaling of
capacities, we obtain that with probability at least 1−O(1/poly(|E|)), randomized rounding
returns an all-or-nothing unsplittable multi-commodity flow whose benefit is at least 1−O(ε)
times the optimal benefit. J

4 Discussion

Theorem 3 provides an upper bound for the probability that alg is not feasible and that
B(alg) is far from B(opt∗). These bounds imply that our algorithm can be viewed as
version of an asymptotic PTAS in the following sense. Suppose that the parameters bmax
and dmax are not a function of |E|. As the benefit of the optimal solution opt∗ increases, the
probability that B(alg) ≥ (1−O(ε)) ·B(opt∗) increases. On the other hand, we need the
capacity-to-demand ratio to be logarithmic, namely, cmin ≥ Ω((∆max · dmax · ln |E|)/ε2). We
believe that the capacity-to-demand ratio is indeed large in realistic networks.

Acknowledgment. This research was supported by the EU project UNIFY FP7-IP-619609
as well as by the German BMBF Software Campus grant 01IS1205.

References
1 A. Abujoda and P. Papadimitriou. Midas: Middlebox discovery and selection for on-path

flow processing. In Proc. COMSNETS Conference, 2015.
2 D. Dietrich, A. Abujoda, and P. Papadimitriou. Network service embedding across multiple

providers with nestor. In IFIP Networking Conference (IFIP Networking), 2015, pages 1–9,
2015.

3 A. Gember-Jacobson et al. OpenNF: Enabling innovation in network function control. In
Proc. ACM SIGCOMM, 2014.

4 GSNFV ETSI. Network functions virtualisation (NFV); use cases. V1.1.1, 2013.
5 Guy Even, Moti Medina, and Boaz Patt-Shamir. Competitive path computation and func-

tion placement in sdns. CoRR, abs/1602.06169, 2016.
6 A. Fischer, J.F. Botero, M. Till Beck, H. de Meer, and X. Hesselbach. Virtual network

embedding: A survey. Communications Surveys Tutorials, IEEE, 15(4):1888–1906, 2013.
7 D. Kreutz, F. M. V. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodolmolky, and

S. Uhlig. Software-defined networking: A comprehensive survey. Proceedings of the IEEE,
103(1):14–76, 2015.

10 Path Computation and Function Placement

8 Tamas Lukovszki and Stefan Schmid. Online admission control and embedding of service
chains. In Proc. 22nd International Colloquium on Structural Information and Communic-
ation Complexity (SIROCCO), 2015.

9 Sevil Mehraghdam, Matthias Keller, and Holger Karl. Specifying and placing chains of
virtual network functions. In Cloud Networking (CloudNet), 2014 IEEE 3rd International
Conference on, pages 7–13. IEEE, 2014.

10 Rajeev Motwani, Joseph Seffi Naor, and Prabhakar Raghavan. Randomized approxima-
tion algorithms in combinatorial optimization. In Approximation algorithms for NP-hard
problems, pages 447–481. PWS Publishing Co., 1996.

11 P. Skoldstrom et al. Towards unified programmability of cloud and carrier infrastructure.
In Proc. European Workshop on Software Defined Networking (EWSDN), 2014.

12 R. Hartert et al. Declarative and expressive approach to control forwarding paths in carrier-
grade networks. In Proc. ACM SIGCOMM, 2015.

13 Prabhakar Raghavan. Randomized rounding and discrete ham-sandwich theorems: prov-
ably good algorithms for routing and packing problems. In Report UCB/CSD 87/312.
Computer Science Division, University of California Berkeley, 1986.

14 Prabhakar Raghavan and Clark D Tompson. Randomized rounding: a technique for prov-
ably good algorithms and algorithmic proofs. Combinatorica, 7(4):365–374, 1987.

15 Matthias Rost and Stefan Schmid. Service chain and virtual network embeddings: Approx-
imations using randomized rounding. CoRR, abs/1604.02180, 2016.

16 Sahel Sahhaf, Wouter Tavernier, Matthias Rost, Stefan Schmid, Didier Colle, Mario
Pickavet, and Piet Demeester. Network service chaining with optimized network function
embedding supporting service decompositions. In Journal Computer Networks (COMNET),
Elsevier, 2015.

17 Robert Soulé, Shrutarshi Basu, Parisa Jalili Marandi, Fernando Pedone, Robert Kleinberg,
Emin Gun Sirer, and Nate Foster. Merlin: A language for provisioning network resources.
In Proc. 10th ACM International on Conference on Emerging Networking Experiments and
Technologies (CoNEXT), pages 213–226, 2014.

18 M. Xia, M. Shirazipour, Y. Zhang, H. Green, and A. Takacs. Network function place-
ment for NFV chaining in packet/optical datacenters. Journal of Lightwave Technology,
33(8):1565–1570, 2015.

19 Neal E Young. Randomized rounding without solving the linear program. In SODA,
volume 95, pages 170–178, 1995.

A Multi-Commodity Flows

Consider a directed graph G = (V,E). Assume that edges have non-negative capacities c(e).
For a vertex u ∈ V , let out(u) denote the outward neighbors, namely the set {y ∈ V | (u, y) ∈
E}. Similarly, in(u) , {x ∈ V | (x, u) ∈ E}. Consider two vertices s and t in V (called the
source and destination vertices, respectively). A flow from s to t is a function f : E → R≥0

that satisfies the following conditions:

(i) Capacity constraints: for every edge (u, v) ∈ E, 0 ≤ f(u, v) ≤ c(u, v).
(ii) Flow conservation: for every vertex u ∈ V \ {s, t}∑

x∈in(u)

f(x, u) =
∑

y∈out(u)

f(u, y).

Even, Rost, and Schmid 11

The amount of flow delivered by the flow f is defined by

|f | ,
∑

y∈out(s)

f(s, y)−
∑

x∈in(s)

f(x, s).

Consider a set ordered pairs of vertices {(si, ti)}i∈I . An element i ∈ I is called a
commodity as it denotes a request to deliver flow from si to ti. Let F , {fi}i∈I denote a set
of flows, where each flow fi is a flow from the source vertex si to the destination vertex ti.
We abuse notation, and let F denote the sum of the flows, namely F (e) ,

∑
i∈I fi(e), for

every edge e. Such a sequence is a multi-commodity flow if, in addition it satisfies cumulative
capacity constraints defined by:

for every edge (u, v) ∈ E: F (u, v) ≤ c(u, v).

Demands are used to limit the amount of flow per commodity. Formally, let {di}i∈I
denote a sequence of positive real numbers. We say that di is the demand of flow fi if we
impose the constraint that |fi| ≤ di. Namely, one can deliver at most di amount of flow for
commodity i.

The maximum benefit optimization problem associated with multi-commodity flow is
formulated as follows. The input consists of a (directed) graph G = (V,E), edge capacities
c(e), a sequence source-destination pairs for commodities {(si, ti)}i∈I . Each commodity has
a nonnegative demand di and benefit bi. The goal is to find a multi-commodity flow that
maximizes the objective

∑
(u,v)∈E bi · |fi|. We often refer to this objective as the benefit of

the multi-commodity flow. When the demands are identical and the benefits are identical,
the maximum benefit problem reduces to a maximum throughput problem.

A multi-commodity flow is all-or-nothing if |fi| ∈ {0, di}, for every commodity i ∈ I.
A multi-commodity flow is unsplittable if the support of each flow is a simple path. (The
support of a flow fi is the set of edges (u, v) such that fi(u, v) > 0.) We often emphasize the
fact that a multi-commodity flow is not all-or-nothing or not unsplittable by saying that it
fractional.

B Randomized Rounding Procedure

In this section we overview the randomized rounding procedure. The presentation is based
on [10]. Given an instance F = {fi}i∈I of a fractional multi-commodity flow with demands
and benefits, we are interested in finding an all-or-nothing unsplittable multi-commodity flow
F ′ = {f ′i}i∈I such that the benefit of F ′ is as close to the benefit of F as possible.
I Observation 1. As flows along cycles are easy to eliminate, we assume that the support of
every flow fi ∈ F is acyclic.

We employ a randomized procedure, called randomized rounding, to obtain F ′ from F .
We emphasize that all the random variables used in the procedure are independent. The
procedure is divided into two parts. First, we flip random independent coins to decide
which commodities are supplied. Next, we perform a random walk along the support of the
supplied commodities. Each such walk is a simple path along which the supplied commodity
is delivered. We describe the two parts in detail below.

Deciding which commodities are supplied. For each commodity, we first decide if
|f ′i | = di or |f ′i | = 0. This decision is made by tossing a biased coin biti ∈ {0, 1} such that

Pr [biti = 1] , |fi|
di
.

12 Path Computation and Function Placement

If biti = 1, then we decide that |f ′i | = di (i.e., commodity i is fully supplied). Otherwise, if
biti = 0, then we decide that |f ′i | = 0 (i.e., commodity i is not supplied at all).

Assigning paths to the supplied commodities. For each commodity i that we decided
to fully supply (i.e., biti = 1), we assign a simple path Pi from its source si to its destination
ti by following a random walk along the support of fi. At each node, the random walk
proceeds by rolling a dice. The probabilities of the sides of the dice are proportional to
the flow amounts. A detailed description of the computation of the path Pi is given in
Algorithm 1.

Algorithm 1 Algorithm for assigning a path Pi to flow fi.
1: Pi ← {si}.
2: u← si
3: while u 6= ti do . did not reach ti yet
4: v ← choose-next-vertex(u).
5: Append v to Pi
6: u← v

7: end while
8: return (Pi).
9: procedure choose-next-vertex(u, fi) . Assume that u is in the support of fi
10: Define a dice C(u, fi) with |out(u)| sides. The side corresponding to an edge (u, v)

has probability fi(u, v)/(
∑

(u,v′)∈out(u) fi(u, v′)).
11: Let v denote the outcome of a random roll of the dice C(u, fi).
12: return (v)
13: end procedure

Definition of F ′. Each flow f ′i ∈ F ′ is defined as follows. If biti = 0, then f ′i is identically
zero. If biti = 1, then f ′i is defined by

f ′i(u, v) ,
{
di if (u, v) ∈ Pi,
0 otherwise.

Hence, F ′ is an all-or-nothing unsplittable flow, as required.

C Analysis of Randomized Rounding - Expected Flow Per Edge

The presentation in this section is based on [10].
I Claim 1. For every commodity i and every edge (u, v) ∈ E:

Pr [(u, v) ∈ Pi] = fi(u, v)
di

,

E [f ′i(u, v)] = fi(u, v).

Proof. Since

E [f ′i(u, v)] = di ·Pr [(u, v) ∈ Pi] ,

it suffices to prove the first part.
An edge (u, v) can belong to the path Pi only if fi(u, v) > 0. We now focus on edges in

the support of fi. By Observation 1, the support is acyclic, hence we can sort the support in

Even, Rost, and Schmid 13

topological ordering. The claim is proved by induction on the position of an edge in this
topological ordering.

The induction basis, for edges (si, y) ∈ out(si), is proved as follows. Since the sup-
port of fi is acyclic, it follows that fi(x, si) = 0 for every (x, si) ∈ in(si). Hence |fi| =∑
y∈out(si,fi) fi(si, y). Hence,

Pr [(si, y) ∈ Pi] = Pr [biti = 1] ·Pr [dice C(si, fi) selects (si, y) | biti = 1]

= |fi|
di
· fi(si, y)∑

y∈out(si,fi) fi(si, y)

= fi(si, y)
di

,

and the induction basis follows.
The induction step, for an edge (u, v) in the support of fi such that u 6= si, is proved as

follows. Vertex u is in Pi if and only if Pi contains an edge whose head is u. We apply the
induction hypothesis to these incoming edges, and use flow conservation to obtain

Pr [u ∈ Pi] = Pr

 ⋃
x∈in(u)

(x, u) ∈ Pi


= 1
di
·
∑

x∈in(u)

fi(x, u)

= 1
di
·

 ∑
y∈out(u)

fi(u, y)

 .

Now,

Pr [(u, v) ∈ Pi] = Pr [u ∈ Pi] ·Pr [dice C(u, fi) selects (u, v) | u ∈ Pi]

= 1
di
·

 ∑
y∈out(u)

fi(u, y)

 · fi(u, v)∑
y∈out(u) fi(u, y)

= fi(u, v)
di

,

and the claim follows. J

By linearity of expectation, we obtain the following corollary.
I Corollary 1. E [|f ′i |] = |fi|.

D Chernoff Bounds

In this section we present material from Raghavan [14] and Young [19] about the Chernoff
bounds used in the analysis of randomized rounding.
I Fact 1. ex ≥ 1 + x and x ≥ ln(1 + x) for x > −1.
I Fact 2. (1 + α)x ≤ 1 + α · x, for 0 ≤ x ≤ 1 and α ≥ −1.
I Fact 3 (Markov Inequality). For a non-negative random variable X and α > 0, Pr [X ≥ α] ≤
E[X]
α .

14 Path Computation and Function Placement

I Definition 5. The function β : (−1,∞)→ R is defined by β(ε) , (1 + ε) ln(1 + ε)− ε.

I Fact 4. For ε such that −1 < ε < 1 we have β(−ε) ≥ ε2

2 ≥ β(ε) ≥ 2ε2

4.2+ε . Hence,
β(−ε) = Ω(ε2) and β(ε) = Θ(ε2).

I Theorem 6 (Chernoff Bound). Let {Xi}i denote a sequence of independent random variables
attaining values in [0, 1]. Assume that E [Xi] ≤ µi. Let X ,

∑
iXi and µ ,

∑
i µi. Then,

for ε > 0,

Pr [X ≥ (1 + ε) · µ] ≤ e−β(ε)·µ.

Proof. Let A denote the event that X ≥ (1 + ε) · µ. Let f(x) , (1 + ε)x. Let B denote the
event that

f(X)
f((1 + ε) · µ) ≥ 1.

Because f(x) > 0 and f(x) is monotonously increasing, it follows that Pr [A] = Pr [B]. By
Markov’s Inequality,

Pr [B] ≤ E [f(X)]
f((1 + ε) · µ) .

Since X =
∑
iXi is the sum of independent random variables,

E [f(X)] =
∏
i

E
[
(1 + ε)Xi

]
≤
∏
i

E [1 + ε ·Xi] (by Fact 2)

≤
∏
i

(1 + ε · µi)

≤
∏
i

eε·µi (by Fact 1)

= eε·µ

We conclude that

Pr [A] ≤ eε·µ

f((1 + ε) · µ)
= e−β(ε)·µ,

and the theorem follows. J

We prove an analogue theorem for bounding the probability of the event that X is much
smaller than µ.

I Theorem 7 (Chernoff Bound). Under the same premises as in Theorem 6 except that
E [Xi] ≥ µi, it holds that, for 1 > ε ≥ 0,

Pr [X ≤ (1− ε) · µ] ≤ e−β(−ε)·µ.

Proof. We repeat the proof of Theorem 6 with the required modifications. Let A denote the
event that X ≤ (1− ε) · µ. Let g(x) , (1− ε)x. Let B denote the event that

g(X)
g((1− ε) · µ) ≥ 1.

Even, Rost, and Schmid 15

Because g(x) > 0 and g(x) is monotonously decreasing, it follows that Pr [A] = Pr [B]. By
Markov’s Inequality,

Pr [B] ≤ E [g(X)]
g((1− ε) · µ) .

Since X =
∑
iXi is the sum of independent random variables,

E [g(X)] =
∏
i

E
[
(1− ε)Xi

]
≤
∏
i

E [1− ε ·Xi] (by Fact 2)

≤
∏
i

(1− ε · µi)

≤
∏
i

e−ε·µi (by Fact 1)

= e−ε·µ

We conclude that

Pr [A] ≤ e−ε·µ

g((1− ε) · µ)
= e−β(−ε)·µ,

and the theorem follows. J

	Introduction
	Modeling Requests in SDN
	The Substrate Network
	Requests and pr-Graphs
	The Product Network
	Valid Realizations of SDN Requests
	The Path Computation and Function Placement Problem (PCFP)

	The Approximation Algorithm for PCFP
	Fractional Relaxation of the PCFP-problem
	The Algorithm
	Analysis of the algorithm
	Unit Benefits

	Discussion
	Multi-Commodity Flows
	Randomized Rounding Procedure
	Analysis of Randomized Rounding - Expected Flow Per Edge
	Chernoff Bounds

