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Abstract

We consider the problem of efficient evacuation using multiple exits. We formulate this
problem as a discrete problem on graphs where mobile agents located in distinct nodes of a
given graph must quickly reach one of multiple possible exit nodes, while avoiding congestion
and bottlenecks. Each node of the graph has the capacity of holding at most one agent at each
time step. Thus, the agents must choose their movements strategy based on locations of other
agents in the graph, in order to minimize the total time needed for evacuation. We consider
two scenarios: (i) the centralized (or offline) setting where the agents have full knowledge of
initial positions of other agents, and (ii) the distributed (or online) setting where the agents
do not have prior knowledge of the location of other agents but they can communicate locally
with nearby agents and they must modify their strategy in an online fashion while they move
and obtain more information. In the former case we present an offline polynomial time solution
to compute the optimal strategy for evacuation of all agents. In the online case, we present a
constant competitive algorithm when agents can communicate at distance two in the graph. We
also show that when the agents are heterogeneous and each agent has access to only a subgraph
of the original graph then computing the optimal strategy is NP-hard even with full global
knowledge. This result holds even if there are only two types of agents.
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1 Introduction

Coordinated action of multiple autonomous agents is a subject of study in many contexts. Fre-
quently, the communication capabilities of agents are limited, and the exchange of information
between agents is only possible when they are located close to each other, which creates challenges
for coordination problems. We consider here the evacuation problem which requires multiple mobile
entities to reach designated safe area, in a coordinated manner. This can correspond to evacuating
a building with a crowd of people inside, who are required to leave the building through emergency
exits due to flood, fire, bomb attack, gas leak or other dangers. One could also imagine other
scenarios, e.g., a swarm of mobile robots that are required to gather in selected places (exits in the
context of evacuation terminology).

In practical situations it can be desired to calculate the evacuation strategy ‘on the fly’ – just
in the time, when the evacuation process is about to start. In fact it is possible to compute a
customized solution adapted to the current situation, depending on the number of agents and
their locations. Centralized computation of the evacuation strategy has an important drawback as
the security of the system relies strongly on the central computing unit and the communication
between central unit and agents. Hence, for the safety reasons, a distributed approach could be
a better solution. Indeed, recently some attention has been paid to the study of non-centralized
evacuation control systems for example assuming a usage of handheld devices (like smartphones)
by evacuees [8].

In this paper we try to answer the question of how the lack of knowledge about the positions of
other agents may influence the quality of a solution, e.g., by creating bottlenecks when too many
agents try to go to the same exit. We compare the distributed (online) solutions to the problem with
centralized (offline) solutions. Another important issue for evacuation is when the mobile agents
have intrinsic characteristics preventing some of them from visiting some areas of the environment.
For example, disabled people might not be able to go through steep stairs inside a building. To
address such situations we consider a reachability function defined for each of the agents separately
and investigate the coordinated evacuation of such heterogenous agents.

1.1 Related Work

Evacuation models can be classified as macro- and microscopic [14], where macroscopic models
are based on optimization approaches of dynamic network flows and do not consider individual
characteristics of evacuees while microscopic models are based on simulations in which physical
abilities of evacuees are considered.

Indeed, the evacuation problem has been widely described as an application of flows over time
(dynamic flows) in time expanded graphs [11, 12] (see the PhD thesis by Jan-Philipp Kappmeier [16]
for the recent survey and the plethora of literature references).

Graphs based models are the first choice in the street network modelling [15] but also such
environments like buildings [2, 4] or caves [3] can be modelled by graphs. In this case, additional
properties of graphs can be considered to reflect properties of the real network such as the transit
times, connection capacities, node capacities etc. The motivation for the graph model considered
in this paper is lattice based, discretization graph where the Euclidean space is divided into small
cells in the shape of squares or hexagons. Such an approach has been mostly considered for the
sake of microscopic simulations [16].

Another type of investigations has been done in the context of distributed algorithms for col-
laborative agents. Chrobak et al. [5] investigate evacuation from the line and Czyżowicz et al. [6, 7]
study the problem of evacuation through an unknown exit from a disc shaped continuous space.
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The goal in these papers is to minimize the time when the last agent reaches an exit, which is in
contrast to a collaborative search problem studied earlier [1], where the goal is to find an exit by
the first robot as fast as possible. Many of these results attempt to provide the best algorithms in
terms of evacuation time, compared to the obvious optimal solution when the exit is known to the
agents. In the above investigations, the number of agents is small and the issue of congestion or
collisions does not appear at all.

1.2 Our Results

In this paper, we consider the evacuation problem in the (discrete) graph model where the agents
start from distinct nodes and they know the environment (i.e., the graph and the designated exits)
but may not know the initial position of other agents. We first consider the centralized or offline
version of our problem which we formulate in Section 2 while in Section 3 we present polynomial
time algorithms for computing the evacuation strategy in general graphs using the time expansion
technique. Section 4 gives a formal statement of the distributed version of the problem when the
agents can only communicate locally and thus the strategy must be computed in online fashion. As
a first step towards a distributed solution, we consider tree networks and we present and analyze
distributed strategies for evacuation from tree networks in Section 5. In particular, in Section 5.1
we prove that there does not exist any distributed algorithm for evacuating agents in less than
2 times the offline optimal topt steps even in tree networks (Theorem 2). On the other hand,
in Section 5.3 we give a distributed algorithm for trees proving its correctness and bounding the
evacuation time by 72 · topt steps (Theorem 4). Finally, in Section 6, we consider the evacuation of
heterogenous agents having additional restrictions, namely every agent has access to a predefined
subset of edges in the graph (see the similar concept applied to rendezvous problem in [10]). We
show that computing the optimal evacuation strategy is NP-hard in this case even if there are only
two types of agents and even if the evacuation time is a small constant.
Due to the space constraint, proofs of some of the lemmas and theorems have been omitted and
they can be found in the appendix.

2 Problem formulation

In this section we formulate the discrete evacuation problem for the offline setting. Additional
assumptions required in the distributed setting will be given in Section 4. In a basic version of the
problem we are given a simple graph G = (V,E) with node set V , edge set E, and size n = |V (G)|,
and the set A of k agents initially placed on preselected nodes of the graph G, called homebases
such that no two agents occupy the same homebase. In what follows the set of all homebases is
denoted by H. We also distinguish a subset X of nodes called exits. Time is divided into steps of
unit duration. In each step the following actions are performed by each agent:

(A1) an agent either changes its location from the currently occupied node v to one of its neighbors,
or remains at v,

(A2) an agent that occupies some node in X, evacuates from the graph.

An agent that evacuates is removed from the graph. If in some step an agent is not evacuated,
then we say that the agent is present in the graph. The node occupied by an agent i at the end
of action (A1) in step s is denoted by νi(s), while νi(0) denotes the initial position (the homebase)
of the agent. A sequence (ν1, . . . , νk) of the above functions is called an evacuation strategy if for
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each agent i ∈ A there is a step si such that νi(si) ∈ X, and for each pair of distinct agents i, j ∈ A
in each step s ∈ {1, . . . ,min{si, sj}} it holds νi(s) 6= νj(s). The length of an evacuation strategy is
defined as max{s1, . . . , sk}. Note that according to (A1) we allow any pair of agents i, j located in
neighbouring nodes to move in a single step s in such a way that νi(s) = νj(s − 1) provided that
νj(s− 1) 6= νj(s). The decision version of discrete evacuation problem Evac is defined as follows:

Problem Evac

Input: a graph G, an integer l, a set X of exits and a set H of homebases keeping k agents.

Question: does there exist an evacuation strategy of length at most l?

3 The complexity of Evac

In this section we argue that there exists a polynomial-time algorithm for the problem Evac. The
solution is obtained using classical results for the maximum flow problem. More precisely, for an
input (G, l,X,H) of Evac we construct an evacuation digraph Q = (U,A) for which there exists a
flow of size k if and only if the answer to Evac is yes.

Construction 1. Let V = {v1, . . . , vn} be the set of nodes of a given graph G and let Q0, Q1, . . . , Ql
be disjoint digraphs such that for each digraph Qj = (V in

j ∪ V out
j , Aj) with V in

j = {vinj,1, . . . , vinj,n}
and V out

j = {voutj,1 , . . . , v
out
j,n }, the arc set Aj is defined as follows Aj = {(vinj,p, voutj,p )

∣∣ p ∈ {1, . . . , n}}.
The node set U of digraph Q consists of the nodes of all digraphs Qj and the two additional nodes
s and t. More formally U = {s, t}∪

⋃
j∈{0,...,l}(V

in
j ∪V out

j ). To obtain the arc set A of Q we take all
arcs of digraphs Q0, Q1, . . . , Ql, and for each j ∈ {0, . . . , l − 1} between the nodes of Qj and Qj+1

we add the arcs: (voutj,p , v
in
j+1,p) for each p ∈ {1, . . . , n}, and (voutj,p , v

in
j+1,q) if for the corresponding

nodes vp, vq of the graph G it holds {vp, vq} ∈ E(G). We also add to A the following arcs: (s, vin0,p)
if the corresponding vertex vp of G belongs to H, and (voutj,p , t) whenever vp belongs to X and

j ∈ {0, . . . , l}. Less formally, we add arcs outgoing from s to the nodes in V in
0 corresponding to all

homebases of agents, and we add arcs incoming to t from all nodes in V out
0 ∪· · ·∪V out

l corresponding
to the exits. All arcs in Q are assumed to have unit capacities. Clearly, for every (G, l,X,H) the
corresponding evacuation digraph can be constructed in polynomial time.

Lemma 1. There exists an s-t flow of size k in evacuation digraph Q if and only if the answer to
Evac is yes for the input (G, l,X,H).

Proof. Suppose that we have an s-t flow of size k in the digraph Q. Clearly, such a flow is made
of k s-t paths that have only their endpoints in common. Each such a path P encodes the moves
of a corresponding agent in an evacuation strategy. Indeed, for each j ∈ {0, . . . , l− 1}, the path P
contains exactly one node voutj,p in V out

j and exactly one node vinj+1,q in V in
j+1, and (u, v) ∈ A. Then,

the evacuation strategy dictated by P moves the corresponding agent from vp to vq in G in step
j + 1. Since the internal nodes of the paths that constitute the flow have no internal nodes in
common, the evacuation strategy obtained in this way is guaranteed to have no ‘collisions’ between
agents. Also, since the only arcs incoming to t are outgoing from nodes in V out

j that correspond to
the exit set X, it is ensured that each agent reaches an exit within the time limit l.

Since the maximum flow problem is polynomial [9] we have the following.

Theorem 1. There exists a polynomial-time algorithm for solving the problem Evac.
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4 Distributed evacuation model

We now consider the distributed version of the evacuation problem where each agent must au-
tonomously compute its strategy to move based on local information and communication with the
agents it encounters. As before the model is synchronous and during each time step, each agent
first communicates with other agents and performs local computations to decide on the action to
be performed in this step; then the agent performs the action (i.e. it moves, stays or exits). Recall
that the two possible actions are (A1) and (A2) defined in Section 2. Since each node can hold at
most one agent at a given time, the actions selected by the agents in each time step must satisfy
this restriction. However it is possible for two agents in adjacent nodes to swap their positions in
a given step (there are no capacity restrictions on edges of the graph in our model).

Our next assumption is that each agent knows in advance the network and its own homebase.
This includes the knowledge of the location of all exits. The nodes of the network have unique
identifiers (thus the agents also have unique identifiers as each agent may ‘inherit’ the identifier of
its homebase). Each agent has the information necessary for navigating in the graph i.e. the agent
knows which edge to follow to reach the node selected for its next location. However the locations
and the number of other agents are initially unknown to the agents.

The communication model is as follows. Each agent can directly communicate with any other
agent that is within a distance of at most 2 in the graph. Note that the exchange of messages within
distance of two (not just one) is a necessary assumption that follows from the necessity of avoiding
collisions between agents. Otherwise two agents at distance two, being unaware of each other may
decide to move to the same node. We assume that communication is instantaneous (or it takes
negligible time compared to the duration of a time step). Thus, at the beginning of each step, any
two agents can exchange any number of messages if the distance between them is not larger than
2. Agents can use message passing to communicate indirectly with other agents via intermediate
agents. For example, see Figure 1 where the agents form two ‘groups’ of communicating agents
such that within each group any two agents i1 and ij can communicate either directly (if they are
within the distance of two) or indirectly if i1 and ij are at distance greater than two but there exist
agents i2, . . . , ij−1 such that for each p ∈ {1, . . . , j − 1} the agents ip and ip+1 are at distance at
most 2. In this example, agents i1 and i4 can communicate by passing messages through agents i2
and i3. Since we do not impose any restrictions on the amount of messages exchanged between any

first group

second group

i1

i2

i3

i4

Figure 1: Example graph with two groups of communicating agents. Black nodes contains agents
and white nodes are unoccupied.

two agents at the beginning of each step, we may assume without loss of generality that each agent
begins each step by identifying positions of all agents with whom it may communicate directly or
indirectly. This can be achieved by performing a broadcast algorithm by the agents and since this
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part is straightforward, we omit the details and assume also in our algorithms that each step begins
with collecting information about all agents that can be reached directly or indirectly by an agent
in that step.

5 Evacuation in tree networks

In this section we investigate evacuation from tree networks in the distributed setting as formulated
above. The performance measure we use for a distributed algorithm is the competitive ratio, defined
as the worst case ratio of the evacuation time achieved by the algorithm over topt the optimal
evacuation time in the offline setting for the same instance (We consider the worst case scenario
over all tree networks and all possible locations of homebases). We start by showing a lower bound
on the competitive ratio of any distributed strategy, in Section 5.1. Then, in Section 5.2, we
introduce some notations used in Section 5.3 which provides a distributed evacuation algorithm for
trees.

5.1 A lower bound

Theorem 2. The competitive ratio of any distributed evacuation algorithm is at least 2 even for
trees.

Proof. Given two integers k, p ≥ 1, let us consider a tree with 3kp + 1 nodes: a node v0 and
3kp nodes vi,j , where i ∈ {1, 2, . . . , k} and j ∈ {1, 2, . . . , 3p}. There are k + 1 exits, X =
{v0, v1,3p, v2,3p, . . . , vk,3p}. Node v0 is adjacent to k nodes: v1,1, v2,1, . . . , vk,1 and for every i ∈
{1, 2, . . . , k} and j ∈ {1, . . . , 3p − 1} there is an edge {vi,j , vi,j+1}. There are k agents a1, . . . , ak,
where νai(0) = vi,p.

Informally speaking, there are k paths of length 3p joined by an exit node v0, with k agents,
one in each path, placed p steps away from the exit v0 and 2p steps from the other exit vi,3p at
the end of the path. We take k = 4p. Note that the optimum evacuation time for this instance is
topt = 2p.

Let A be any distributed algorithm for Evac. Let us consider the step 2p− 2 of the execution
of A. There are two cases:
(i) There exists i ∈ {1, 2, . . . , k} such that there is an agent a on the path connecting vi,p+1 and
vi,3p−2. Clearly a = ai. Note that the agent ai was unable to reach the node vi,1 adjacent to the
exit v0 and thus this agent performed no communication with another agent within the first 2p− 2
steps. If so, let us consider a different instance of the problem in which the graph is the same as in
the former one but there exists only one agent, namely ai with the same homebase vi,p. Thus, the
input to the algorithm executed by the agent ai is the same as in the previous scenario. Therefore,
due to the lack of communication as argued above, the behaviour of the agent ai is exactly the
same in the latter scenario as in the former one. Thus, the agent ai will not evacuate before step
2p. The evacuation time in the latter scenario with single agent present is clearly p and hence in
this case the competitive ratio is 2.

(ii) In the second case, every agent ai is somewhere on the path vi,1, vi,p or already evacuated
during the first 2p − 2 steps. If ai evacuated, then clearly the exit it used is v0. We consider
two additional subcases. In the first subcase, all agents evacuate through v0. Since k = 4p and
topt = 2p, the competitive ratio is 2 as required. In the second subcase, some agent ai evacuates
through the exit vi,3p. But then, ai needs to traverse the path connecting νai(2p − 2) and vi,3p in
steps that follow the step 2p−2. This path contains the path of length 2p connecting vi,p with vi,3p.
Thus, ai does not evacuate within the first (2p − 2) + 2p steps. Therefore, in the second subcase
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the competitive ratio we obtain is 4p−2
2p which can be made arbitrarily close to 2 by taking p large

enough.

5.2 Additional notations

The distance between a pair of nodes u and v denoted by d(u, v) is the length of the path (i.e., the
number of edges) connecting these nodes. By the distance between two agents i and j in step s
we mean the distance between the nodes in which the agents are located at the end of step s, i.e.,
d(νs(i), νs(j)).

The exit associated with node v is the exit x ∈ X with the smallest identifier among the exits
at minimum distance from v. By the primary exit of agent i, denoted by pe(i), we mean the exit
associated with νi(0), the homebase of the agent. Clearly, there may be many agents having the
same node as the primary exit but for each agent the primary exit is unique. Also note that since
the primary exit depends only on the homebase of the agent, it remains the same even if agent
changes its position during evacuation. As we will see later, in the early stage of our algorithm
each agent attempts to evacuate through its primary exit. This leads to the formation of groups of
agents having the same primary exits and allows for computation of group rather than individual
strategies. We address this issue in more detail during analysis of our algorithm.

For the description of the algorithm we also need a specific partition V = (Vx1 , . . . , Vxη) of the
node set of a given tree T with the set of exits X = {x1, . . . , xη}. Namely, for each exit x ∈ X the
set Vx of V is defined as a set consisting of all nodes having x as the associated exit. Naturally,⋃
x∈X Vx = V (T ) and since primary exits are uniquely determined, for any pair of distinct exits

xp, xq it holds Vxp ∩ Vxq = ∅. It is also not hard to see that for each x ∈ X the subgraph induced
by Vx is connected. Let Tx denote the tree induced by Vx.

At the beginning of its computation each agent roots the tree T at the node with the smallest
identifier. This ensures that all agents select the same root. Without loss of generality assume
that agents rooted T in node vr that belongs to the tree Txr which corresponds to exit xr (see in
Fig.2(a) where r = 2). According to the above assumption we construct a tree T̃ with the node
set X, root xr, and edge between each pair of nodes xp, xq for which T contains an edge {v, u}
such that v ∈ Vxp and u ∈ Vxq , p, q ∈ {1, . . . , η} (see Fig.2(b) with x1, x4 corresponding to v, u

in Fig.2(a)). Following “away from the root” natural orientation of the edges of T̃ one can easily
relate subtrees Tx of T . Namely, for any two exits xp, xq we say that Txp is a child of Txq if xq is

the parent of xp under the above orientation of T̃ .
The moves of agents in the early stage of our algorithm result in grouping the agents at exits.

To address this more accurately let x ∈ X and let s be a step. A group of agents at x in step
s, denoted by Gx,s is a maximal set of agents for which νi(s) ∈ V (Tx) and each node of the path
connecting νi(s) and x is occupied by an agent form Gx,s. We say that an agent i joins the group
Gx,s in step s if i /∈ Gx,s−1 but i ∈ Gx,s. An agent i joins exit x in step s if in step s it joins the
group Gx,s (we allow that the group is empty before step s).

Finally, let Ax denote the set of agents with their homebases in Vx, i.e., Ax = {i ∈ A
∣∣ pe(i) =

x}. Note that Ax is not necessarily a group at x.

5.3 The algorithm

Our algorithmic result obtained in this section is achieved in two steps. First, we give an evacuation
algorithm that receives as an input an upper bound B on the optimum time required for the
evacuation topt and we prove that this algorithm has a constant competitive ratio. Then, we
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x6

x1
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T̃

Figure 2: Tree T with exits x1, . . . , x6, subtrees Tx1 , . . . , Tx6 , and the corresponding tree T̃ .

provide our main procedure that uses the ‘doubling technique’ (the first algorithm mentioned above
is called several times with exponentially increasing values on possible upper bounds) to disregard
the assumption that an upper bound on evacuation time is known. As we prove, the competitive
ratio of the second algorithm increases by a constant with respect to the first one. Both algorithms
are formulated for an executing agent i.

Our first algorithm called BoundedDTE (Bounded Distributed Tree Evacuation). We start with
an informal description providing the key ideas. The algorithm can be seen as having two phases.
In the first phase, the agents located in the subtree composed of nodes in Vx want to communicate
with each other to establish the best strategy for them. This strategy that they aim to establish
ignores possible agents located outside of Vx. However, the homebases in Vx are possibly spread in
such a way that the communication between the agents is not possible initially. Thus, all agents
have to meet and they do so by going to x and forming a group at x. It can be estimated when all
agents joined the group at x thanks to the fact that an upper bound B on topt is given as an input.
Once all agents joined the group (we point out that at this point some agents possibly evacuated
through x) they compute a strategy in which some of the agents remain to evacuate through x
while some agents will follow to exit x′ such that Tx′ is a child of Tx. Then the second phase starts
in which each agent goes to the assigned exit.

In the pseudocode we will use the phrase if possible to indicate that the executing agent i verifies
if the specified move can be performed. In particular, if the agent i wants to move to a node u,
then communication with all agents located at u and its neighbors is required. This communication
is needed to determine all agents that want to move to u in this given round and if there is more
than one such an agent, then the agents decide which one (as there can be no more than one) will
perform the move. In our algorithm such ties can be resolved arbitrarily.

Theorem 3. If B is an upper bound on the evacuation time topt, then Procedure BoundedDTE

evacuates agent i in 9 ·B steps.

We now proceed to the description of our main algorithm DTE (Distributed Tree Evacuation)
in which we disregard the previous assumption that an upper bound on topt is known to agents,
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Procedure 1 BoundedDTE(T,B) for agent i

Input: the underlying tree T , the time bound B.

1: for k = 1 to B do
2: If possible, then move to the adjacent node that is closer to pe(i).
3: end for
4: Compute the optimum evacuation strategy for the group Gpe(i),B taking into account pe(i) and

exits in child trees of Tpe(i). Let secondary exit, se(i), be the exit for agent i computed in this
strategy.

5: for k = 1 to 8 ·B do
6: If possible, then move to the adjacent node that is closer to se(i).
7: end for

and again we start with an informal description. The algorithm, as indicated earlier, proceeds
by guessing the possible upper bounds B on topt. For each choice of B, DTE makes a call to
BoundedDTE with input B. If the value of B is indeed at least topt, then all agents will successfully
evacuate. Otherwise, the agents who still did not evacuate reverse their movements to return to
their homebases.

Procedure 2 DTE(T ) for agent i

Input: the underlying tree T .

1: B ← 1
2: while true do
3: B ← 2 ·B
4: if d(νi(0), pe(i)) > B then
5: stay immobilized for next 18 ·B steps.
6: else
7: Apply Procedure BoundedDTE for 9 ·B steps or until the evacuation of i.
8: reverse 9 ·B steps made according to Procedure BoundedDTE reaching its homebase.
9: end if

10: end while

Theorem 4. Procedure DTE evacuates all agents in Θ(topt) steps.

Proof. Once the variable B achieves value B′ which is larger than topt (topt < B′ ≤ 2 · topt) then
Procedure DTE eventually evacuates all remaining agents. Let us estimate t2, the number of steps
required for the execution of Procedure DTE:

t2 ≤ 18 · (2 + 4 + · · ·+B′) ≤ 36 ·B′ ≤ 72 · topt.

Now it is required to justify that agents are able to realize the described strategy. The analysis
is very similar to that of Procedure DTE but there are two possibilities of additional traffic jams
that must be considered.

First, it can happen that agents from the group Gpe(i),B executing statements described in lines:
7, 8 of Procedure DTE encounter immobilized agents from the rest of Ape(i). In this case a swap of
agents will be applied. Suppose that traveling agent a at node u is about to swap with immobilized
agent j at node v at the path uvw. Then, a swaps with j and they move: a moves from v to w and j
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moves from u back to v. Observe here also, that during the reverse phase (line 8) of Procedure DTE

immobilized agents are still immobilized in the same place, thus making the reverse phase possible.
An interaction in between agents from Gpe(i),B and agents from the parent subtree of Tpe(i) is

covered by the correctness proof of Procedure DTE.

6 Generalizations of Evac

In this section we introduce the problem RestEvac, a generalization of Evac in which the moves
of agents are restricted so that each agent has access to a preselected subset of edges.

6.1 Evacuation with restricted access to edges

We start by defining an evacuation strategy in this scenario. All restrictions of Evac carry over,
except that additionally for each agent i ∈ A, a set Ri ⊆ E(G) of permitted edges is given as a part
of the input, while action (A1) defined in Section 2 is replaced by:

(RA1) each agent either changes its location from the currently occupied node v to one of its
neighbors u provided that {u, v} ∈ Ri, or the agent remains at v.

A sequence of functions (ν1, . . . , νk) that satisfy (RA1) and (A2) is called restricted evacuation
strategy. The decision version of our new problem, called RestEvac can be defined as follows:

Problem RestEvac

Input: a graph G, an integer l, a set X of exits, a set H of homebases keeping k agents, and
sets R1, . . . , Rk specifying permitted edges.

Question: does there exist a restricted evacuation strategy of length at most l?

6.2 The complexity of RestEvac – restricted length

We now show that the RestEvac problem is NP-hard by reducing the NP-complete 3-dimensional
matching problem, denoted by 3DM, to RestEvac. We first recall the former problem. The input
to 3DM consists of three pairwise disjoint m-element sets A,B,C and a set of triples M ⊆ A×B×C.
The answer to 3DM is yes if and only if there exists M ′ ⊆ M such that |M ′| = m and for every
two distinct triples (a, b, c) and (a′, b′, c′) in M ′ it holds a 6= a′, b 6= b′ and c 6= c′.

Theorem 5. The problem RestEvac is NP-complete even if the input parameter l equals 2.

Proof. We describe our reduction by constructing the input to RestEvac. Suppose that (A,B,C,m,M)
is the input to 3DM. For any triple (a, b, c) ∈ M define for brevity ξ((a, b, c)) = {{a, b}, {b, c}}.
Let G be defined as follows:

G =

(
A ∪B ∪ C,

⋃

Z∈M
ξ(Z)

)
.

Set l = 2, X = C, k = m and let the k agents be initially placed on the nodes in A, i.e., set H = A.
For each agent i ∈ A having its homebase ai ∈ A, let

Ri =
⋃

Z∈N
ξ(Z), where N = M ∩ ({ai} ×B × C) .
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This completes the construction and it remains to prove its correctness. We argue that the answer
to 3DM is yes if and only if the answer to RestEvac is yes.

First, suppose that the answer to 3DM is yes and let M ′ ⊆M be the corresponding solution.
We construct a restricted evacuation strategy (ν1, . . . , νk) as follows. For each i ∈ A there exists
(ai, bi, ci) ∈M ′ and we define:

νi(0) = ai, νi(1) = bi, νi(2) = ci.

It follows from the construction of the input to 3DM and from the definition of X that νi(0) 6= νj(0)
for i 6= j. Since M ′ is a solution to 3DM, we obtain that νi(s) 6= νj(s) for i 6= j and s ∈ {1, 2}.
Consider an edge e = {νi(s), νi(s + 1)} traversed by agent i in step s ∈ {0, 1}. We have that
e ∈ ξ((ai, bi, ci)) and hence e ∈ Ri. Finally, νi(2) ∈ X by construction for each i ∈ A, which proves
that (ν1, . . . , νk) is indeed a restricted evacuation strategy of length 2.

Next, suppose that the answer to RestEvac is yes and let (ν1, . . . , νk) be a restricted evacuation
strategy of length 2. Since the homebases of agents are in A and X = C, we have that for each
agent i ∈ A it holds νi(0) ∈ A, νi(1) ∈ B and νi(2) ∈ C. Define M ′ = {(νi(0), νi(1), νi(2))

∣∣ i ∈ A}.
We have that {νi(0), νi(1)} ∈ Ri and {νi(1), νi(2)} ∈ Ri, which for each agent i ∈ A implies
(νi(0), νi(1), νi(2)) ∈M . Thus M ′ is a solution to 3DM.

6.3 The complexity of RestEvac – two types of agents

We now prove that RestEvac is computationally hard even if there are only two types of agents,
i.e., when there exist two subsets E1, E2 ⊆ E(G) of permitted edges such that for each agent i ∈ A
it holds Ri ∈ {E1, E2}. Our proof is by a reduction from the problem (3, 4)-SAT, in which a logical
formula F = C1∧C2∧· · ·∧Cm over variables x1, . . . ,xp is a part of the input, where each clause Ci
is a disjunction of exactly three literals and each variable occurs at most four times in the logical
formula. The question in (3, 4)-SAT is whether there exists a Boolean assignment to variables that
satisfies F . The problem (3, 4)-SAT is known to be NP-complete [17]. The main result of this
section is that RestEvac is computationally hard even for fixed length evacuation strategies and
only two types of agents whose respective sets of permitted edges are disjoint.

Theorem 6. The problem RestEvac is NP-complete even if the input parameter l equals 5 and
for each agent i ∈ A it holds Ri ∈ {E1, E2}, where E1 ∩ E2 = ∅.

7 Conclusions and Open problems

The goal of this work was to introduce a natural distributed model for the discrete evacuation
problem and to analyze its basic properties by looking at its complexity and solvability in the
mobile agent setting. One assumption that we made in this model, which greatly affects the
algorithmic approach, is that local computations of agents and passing of messages take negligible
time with respect to the movements of agents. However, one can consider scenarios in which the
amount of communication performed in each synchronous step is somewhat more restricted. For
example, one could analyze the number of messages exchanged by agents besides the evacuation
time.

Another research direction could lead towards dropping the assumption that the network is
known to agents. In such scenario, an algorithmic approach should adopt some concepts from the
well studied exploration problems for unknown networks. As an intermediate scenario, one could
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consider providing the agents only partial information about the network by performing, e.g., a
quantitative analysis of the amount of input information (we refer here to the advice complexity
introduced in [13]).

In terms of the competitive ratio achievable by any online algorithm, we studied tree networks,
and it is interesting to see how this parameter would behave in other network topologies. For
example, are there networks in which the competitive ratio is not constant, e.g., a function of the
number of agents or some other input parameter? Another open question worth investigating is
what happens when the agents cannot communicate but have only local visibility.
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APPENDIX

A Proof of Theorem 3

We prove two lemmas that imply Theorem 3.

Lemma 2. If B is an upper bound on the evacuation time topt, then the first loop in Proce-
dure BoundedDTE (lines: 1–3) finishes in B steps resulting in every agent either evacuated or
joined the group at its primary exit.

Proof. Let D be the largest distance from agent‘s homebase to its primary exit,

D = max
i∈A

d(νi(0), pe(i)) = max
i∈A

min
x∈X

d(νi(0), x).

Clearly, we have D ≤ topt.

Now we show that if agent i joins exit x in step s, then s ≤ d(νi(0), pe(i)). Let P (s′) ⊆ T , for
s′ ∈ {0, 1, . . . , s} be a maximum subpath of a path between νi(s

′) and pe(i) such that νi(s
′) ∈ V (P )

and for every node v ∈ V (P (s′)) there exists an agent j such that νj(s
′) = v. Agent i joins exit

pe(i) in step s when either d(νi(s), pe(i)) = 0 or d(νi(s),pe(i)) is equal to the length of P (s).
Now, let us observe that in each step s′ before i joins pe(i), the agent i either gets one step

closer to pe(i) and the length of P (s′ + 1) is the same as the length of P (s′) or i does not move,
i.e., νi(s

′) = νi(s
′+ 1) and the length of path P (s′+ 1) is larger than the length of P (s′) by at least

1.

Lemma 3. Suppose that B is an upper bound on topt and that an executing agent did not evacuate
within the first B steps. Then, the agent evacuates during the first 4(B + topt) iterations of the
second loop in Procedure BoundedDTE (lines: 5–7).

Proof. Let evac(Gx,B) be the time needed for the evacuation of the group Gx,B according to the
strategy computed in step B (line 4 of Procedure BoundedDTE).

We first observe that taking into account exits from an indirect descendant (descendant but
not child) subtrees of Tpe(i) will not allow faster evacuation. To the contrary suppose that there
exists an evacuation strategy such that the evacuation with the usage of such exits shortens the
computed evacuation time. Among such strategies let us select one with the smallest number of
agents (which must be nonzero) assigned to an exit in an indirect descendant subtree Txq . Among
such agents, let us consider agent a assigned to evacuate through xq. Being an indirect descendant
subtree means that there exists an exit xp such that Txq is descendant of Txp and Txp is a child
of Tpe(i). Now let us consider two paths: P1 from νa(B) to xp and P2 from νa(B) to xq. We have
P1 ∩ Tpe(i) = P2 ∩ Tpe(i). Due to the existence of the bottleneck in between Tpe(i) and Txp we can
redirect the considered agent a to exit xp without increase of evacuation time, a contradiction.

Let evacT (Gx,s) be the optimum evacuation time of the group Gx,s through all possible exits
in T and let us consider evacT (Gpe(i),B). There exists a bottleneck (exactly one edge) in between
Tpe(i) and the parent subtree of Tpe(i), so using all exits in T makes it possible to evacuate only
one additional agent per step during the evacuation process. On the other hand evac(Gpe(i),B) ≤
|Gpe(i),B| as exactly one agent per step can evacuate through pe(i) and possibly some more agents
from Gpe(i),B through other exits in a child of Tpe(i). Thus

evac(Gpe(i),B) ≤ 2 · evacT (Gpe(i),B). (1)
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Let evac0(Ax) be the evacuation time for the group Ax of agents located in their homebases. Let us
now bound evac0(Ape(i)). Clearly Gpe(i),B ⊆ Ape(i). As agents from Gpe(i),B are able to come back to
their homebases in B time units reversing the steps taken in the first part of Procedure BoundedDTE
(lines: 1–3) and the evacuation time for the subgroup must not exceed the evacuation time for the
whole group, we have

evacT (Gpe(i),B) ≤ B + evac0(Ape(i)) ≤ B + topt. (2)

If the paths of two agents cross in such a way that they find themselves on two adjacent nodes
and they want to exchange their positions. They exchange the memory states, i.e., the two agents
swap without performing actual moves.

Till now, considering the evacuation strategy for the group Gx,B we have ignored the existence
of agents from other groups and possible interactions between them. Thus, evac(Gx,B) – the time
computed for the evacuation of Gx,B can be different than the time required for the execution of
Procedure BoundedDTE (lines: 5–7) for the same group. Let us denote the latter by exec(Gx,B).

We will argue that the existence of such groups will not increase the evacuation time according
to the strategy computed by Procedure BoundedDTE by more than by the factor of two. In fact we
will show that

exec(Gx,B) ≤ evac(Gx,B) + max{y ∈ X
∣∣ evac(Gy,B)}. (3)

First, let us observe that the evacuation strategy computed for those agents from a group Gxr,B
which will evacuate through the exit xr in Txr , that is Axr = {a ∈ Gxr,B

∣∣ pe(a) = se(a) = xr}, will
not be affected by any other group and computed evacuation time for all of those agents will be
preserved in the execution of Algorithm 1:

exec(Axr) = evac(Axr).

Now, let us consider any other group evacuating through any particular exit x 6= xr as its
primary and secondary exit: Ax = {a ∈ Gx,B

∣∣ pe(a) = se(a) = x}. Those agents‘ strategies can
be affected only by agents from Ayx = {a ∈ Gy,B

∣∣ pe(a) = y and se(a) = x}, where y is the parent
exit of x. Clearly, |Ayx| ≤ evac(Gy,B), thus Equation (3) holds.

Combining inequalities (1)–(3) and taking the maximum over all possible exits we get the
requested bound.

B Proof of Theorem 6

In order to prove the above theorem we give a construction of the graph G, being a part of the
input to RestEvac, then we formulate some helpful observations used in the proofs of Lemmas 4
and 5.

Construction 2. First, on the basis of formula F and the integer p we construct an input graph
G for the problem RestEvac. To that end we first define a variable component G′. Let the set of
the nodes of the component G′ be given by

V (G′) =
{
vji
∣∣ i ∈ {0, . . . , 5}, j ∈ {1, 2}

}
∪
{
uji
∣∣ i ∈ {1, . . . , 5}, j ∈ {1, 2}

}

∪
{
xji,i′ , y

j
i,i′

∣∣ i ∈ {1, . . . , 4}, i′ ∈ {0, . . . , 4}, j ∈ {1, 2}
}
,
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where for convenience and brevity the following pairs of labels refer to the same nodes of G′: u15
and u25, v

1
5 and v25, xji,i and v3−ji for i ∈ {1, . . . , 4}, j ∈ {1, 2}, y1i,4 and y2i,4 for each i ∈ {1, . . . , 4}

(see also Figure 3). The edge set of G′ is given by E(G′) = R1 ∪R2, where for j ∈ {1, 2}

Rj =
{
{vji , v

j
i+1}, {u

j
i , u

j
i+1}

∣∣ i ∈ {1, . . . , 4}
}
∪
{
{vj0, v

j
1}, {v

j
0, u

j
0}
}

∪
{
{xji,i′ , x

j
i,i′+1}, {y

j
i,i′ , y

j
i,i′+1}

∣∣ i ∈ {1, . . . , 4}, i′ ∈ {0, . . . , 3}
}
.
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Figure 3: The variable component: squares are exits, dotted edges are in R1 and dashed edges are
in R2, white nodes denote homebases of agents

For each j ∈ {1, 2}, we place agents at nodes vj0 and xji,0, i ∈ {1, . . . , 4} and we call them agents
of type j. The set of permitted edges for agents of type j is Rj , j ∈ {1, 2}. There are six exits in
the variable component: u15, v

1
5 and y11,4, . . . , y

1
4,4 (also denoted equivalently with an upper index

2).
Having described the variable component, we continue the construction of our graph G, taking

p disjoint copies of the variable component, where the c-th copy, denoted by G′c, corresponds to
variable xc, c ∈ {1, . . . , p}. To distinguish the nodes of the c-th copy of the variable component G′c,
c ∈ {1, . . . , p}, we write xji,i′(c), y

j
i,i′(c), v

j
i (c) and uji (c) in place of xji,i′ , y

j
i,i′ , v

j
i and uji , respectively.

In our construction of G, for each m′ ∈ {1, . . . ,m} we add two nodes fm
′

1 , fm
′

2 that correspond to
the clause Cm′ . Next, for each m′ ∈ {1, . . . ,m} and t ∈ {1, 2, 3} we follow the rules:

• if the t-th literal in Cm′ is xc for some c ∈ {1, . . . , p}, then pick one node among x11,4(c), . . . , x
1
4,4(c)

and add to G edges connecting this node with fm
′

1 and fm
′

2 ,

• if the t-th literal in Cm′ is the negation of a variable xc, c ∈ {1, . . . , p}, then pick a single
node among x21,4(c), . . . , x

2
4,4(c) and add to G edges connecting this node with fm

′
1 and fm

′
2 .
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Moreover, in the process of adding the above edges we have to ensure that each node xji,4(c),
i ∈ {1, . . . , 4}, j ∈ {1, 2} has at most two incident edges that do not belong to G′c, c ∈ {1, . . . , p}.
Initially we locate the agents in G by placing them in variable components as described above
(thus, we have 10p agents in total). If z ∈ V (G) is a homebase of an agent, then such an agent is
denoted by λ[z]. This completes the construction. Clearly, the construction might be computed in
polynomial time.

We have the following observation that highlights the paths that each agent may take in any
5-step evacuation strategy.

Observation 1. For each c ∈ {1, . . . , p}, if the evacuation completes in 5 steps, then

(i) for each j ∈ {1, 2}, the agent λ[vj0(c)] traverses path (vj0(c), . . . , v
j
5(c)) or the agent traverses

(vj0(c), u
j
1(c), . . . , u

j
5(c)),

(ii) for each i ∈ {1, . . . , 4} and j ∈ {1, 2}, the agent λ[xji,0(c)] traverses the path

(xji,0(c), y
j
i,0(c), . . . , y

j
i,4(c)) or (xji,0(c), . . . , x

j
i,5(c), f

m′
t ) for some t ∈ {1, 2} and m′ ∈ {1, . . . ,m}.

Note that instead of stating the paths that an agent follow, one equivalently may provide the
node through which the agent evacuates. This follows from the construction of G, namely from
the fact that for each possible exit through which an agent may evacuate the path of length 5 that
leads to the exit is unique. The next observation states how the movements of some agents affect
the behavior of others.

Observation 2. For each c ∈ {1, . . . , p}, if the evacuation completes in 5 steps, then

(i) if the agent λ[v10(c)] evacuates through v15(c) (respectively, u15(c)), then the agent λ[v20(c)]
evacuates through u25(c) (respectively, v25(c)),

(ii) for each j ∈ {1, 2}, agent λ[vj0(c)] evacuates through vj5(c) if and only if agents

λ[xj1,0(c)], . . . , λ[xj4,0(c)] evacuate through yj1,4(c), . . . , y
j
4,4(c).

We now prove two main lemmas that essentially imply Theorem 6.

Lemma 4. Let F and x1, . . . ,xp be the input to the (3, 4)-SAT problem and let G be the graph
constructed above. If F is satisfiable, then there exists a 5-step evacuation strategy in G.

Proof. Suppose that a Boolean assignment to variables x1, . . . ,xp that satisfies F . We prescribe
the movements of agents as follows. For each c ∈ {1, . . . , p}, if xc is true, then:

• let the agent λ[v10(c)] traverse the path (v10(c), u11(c), . . . , u
1
5(c)),

• let the agent λ[v20(c)] traverse the path (v20(c), . . . , v25(c)),

• for each i ∈ {1, . . . , 4}, let the agent λ[x1i,0(c)] traverse the path (x1i,0(c), y
1
i,0(c), . . . , y

1
i,4(c)),

and

• for each i ∈ {1, . . . , 4}, let the agent λ[x2i,0(c)] traverse the path (x2i,0(c), . . . , x
2
i,5(c), z), where

z is a node that corresponds to some clause.

For each c ∈ {1, . . . , p}, if xc is false, then the agents perform the ‘opposite’ actions, namely:
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• let the agent λ[v10(c)] traverse the path (v10(c), . . . , v15(c)),

• let the agent λ[v20(c)] traverse the path (v20(c), u21(c), . . . , u
2
5(c)),

• for each i ∈ {1, . . . , 4}, let the agent λ[x1i,0(c)] traverse the path (x1i,0(c), . . . , x
1
i,5(c), z), where

z is a node that corresponds to some clause, and

• for each i ∈ {1, . . . , 4}, let the agent λ[x2i,0(c)] traverse the path (x2i,0(c), y
2
i,0(c), . . . , y

2
i,4(c)).

This strategy does not specify the nodes z that correspond to clauses and we will argue that they
can be selected to ensure that the evacuation strategy is valid. It immediately follows that this
strategy performs valid (i.e., collision free) movements of agents within the first four steps. Thus,
we analyze the last fifth step of the strategy. Any agent that is about to exit through a node in a
variable component can do so and thus it is enough to analyze the agents evacuating through nodes
that correspond to clauses. Thus, let m′ ∈ {1, . . . ,m} be selected arbitrarily and it is enough to
argue that there exist at most two agents that in step 4 occupy nodes adjacent to fm

′
1 and fm

′
2 . Let

xji,4(c), c ∈ {1, . . . , p}, i ∈ {1, . . . , 4}, j ∈ {1, 2}, be some neighbor of the above nodes. Note that

there exist exactly three nodes that belong to variable components and are neighbors of fm
′

1 and
fm
′

2 . Hence, to complete the proof we show that if the literal in Cm′ that is xc or its negation is
true, then no agent occupies xji,4(c) in step 4. We now assume that the literal is the variable and the
proof is analogous for the case when the literal is the negation of xc. We have that j = 1 according
to the construction of G. Since xc is true by assumption, the agent λ[x1i,0(c)] traverses the path

(x1i,0(c), y
1
i,0(c), . . . , y

1
i,4(c)) and therefore it is not present at node x1i,4 in step 4. This completes the

proof because no other agent can reach the node x1i,4.

Lemma 5. Let F and x1, . . . ,xp be the input to the (3, 4)-SAT problem and let G be the graph
constructed above. If there exists a 5-step evacuation strategy in G, then F is satisfiable.

Proof. We define Boolean assignment as follows: xc is true if and only if the agent λ[v10(c)] evacuates
through u15(c) in the evacuation strategy, c ∈ {1, . . . , p}. Take any m′ ∈ {1, . . . ,m} and we argue
that some literal in Cm′ is true under the above assignment. The nodes fm

′
1 and fm

′
2 have three

neighbors in variable components and therefore one of those variable components, say G′c, has the
property that the node of G′c adjacent to fm

′
1 and fm

′
2 , let this node be xji,4(c), has no agent in

step 4. The only agent that can reach xji,4(c) is λ[xji,0(c)]. By Observation 1, this agent evacuates

through yji,4(c) in the evacuation strategy we consider. Thus, by Observations 1 and 2, the agent

λ[vj0] exists through uj5(c). By construction of G, Cm′ has xc as a literal if and only if j = 1.
If j = 1, then by definition xc is true and consequently Cm′ is true as required. If j = 2, then
by Observations 1 and 2, the agent λ[v10(c)] evacuates through v15 and therefore xc is false, which
implies that that Cm′ is true. This completes the proof.
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