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Abstract
Two mobile robots are initially placed at the same point on an infinite line. Each robot may
move on the line in either direction not exceeding its maximal speed. The robots need to find
a stationary target placed at an unknown location on the line. The search is completed when
both robots arrive at the target point. The target is discovered at the moment when either robot
arrives at its position. The robot knowing the placement of the target may communicate it to the
other robot. We look for the algorithm with the shortest possible search time (i.e. the worst-case
time at which both robots meet at the target) measured as a function of the target distance from
the origin (i.e. the time required to travel directly from the starting point to the target at unit
velocity).

We consider two standard models of communication between the robots, namely wireless
communication and communication by meeting. In the case of communication by meeting, a
robot learns about the target while sharing the same location with the robot possessing this
knowledge. We propose here an optimal search strategy for two robots including the respective
lower bound argument, for the full spectrum of their maximal speeds. This extends the main
result from [11] referring to the exact complexity of the problem for the case when the speed of
the slower robot is at least one third of the faster one. In addition, we consider also the wireless
communication model, in which a message sent by one robot is instantly received by the other
robot, regardless of their current positions on the line. In this model, we design an optimal
strategy whenever the faster robot is at most 6 times faster than the slower one.
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1 Introduction

Searching is a well-studied problem in which mobile robots need to find a specific target
placed at some a priori unknown location. In some cases, a team of robots is involved, trying
to coordinate their efforts in order to minimize the time. The complexity of the multi-robot
searching is usually defined as the time when the first searcher arrives at the target position
whose location is controlled by an adversary.

In distributed computing, one of the central problems is rendezvous when two mobile
robots collaborate in order to meet in the smallest possible time. The efficiency of the
rendezvous strategy is expressed as the time when the last involved robot reaches the meeting
point, and the meeting point is arbitrary, i.e., the robots may choose the most convenient
one.

In the linear search problem studied in the present paper, a pair of robots has to meet at
an unknown fixed target point of the environment and the time complexity of the process
is determined by the arrival of the second robot. More specifically we consider two mobile
robots placed at the origin of an infinite line. Each robot has its maximal speed that it
cannot exceed while moving in either direction along the line. There is a stationary target,
placed at an unknown point of the line, that a robot discovers when arriving at its placement.
The robot which possesses the knowledge of the target position may communicate it to
the other robot. We consider two communication models of the robots: communication by
meeting when the robots can exchange information only while being located at the same
position, and wireless communication when the robot finding the target may instantaneously
inform the other robot of its position. We want to schedule the movement of both robots so
that eventually each of them arrives at the target location. The cost of the schedule is the
first time when both robots are present at the target position. We express it as a function of
the distance between the target and the origin.

1.1 Related work
Numerous papers have been written on the searching problem, studying diverse models
involving stationary or mobile targets, graph or geometric terrain, known or unknown
environment, one or many searchers, etc. (cf. [1, 3, 17, 21]). Depending on the setting, the
problem is known under the name of treasure hunting, pursuit-evasion, cops and robbers,
fugitive search games, etc. Sometimes the searching robot is not looking for an individual
target point, attempting rather to evacuate being lost in an unknown environment or
determine its position within a known map (e.g. [12, 15]). Several of these research papers
offer exciting challenges of combinatorial or algorithmic nature (see [17]). In most papers
studying algorithmic issues, the objective is either to determine the feasibility of the search,
(i.e., whether the search will succeed under all adversarial choices) or to minimize its cost
represented by the search time, assuming some given speeds of searchers (and perhaps
evaders).

Most of the time searching is considered for a single robot. As one robot usually cannot
map the graph being explored (unless e.g., leaving pebbles at some nodes; see [8]), the second
searcher makes the task feasible (cf. [9]). However, optimization of the search by the use of
multiple robots often involves coordination issues, where the searchers need to communicate
in order to synchronize their efforts and adequately split the entire task into portions assigned
to individual robots (cf. [11, 14, 16, 18]). As this objective is often not easy to achieve, some
multi-robot search problems turn out to be NP-hard (e.g., see [18]).

Several papers on searching consider online algorithms (cf. [19]), where the information
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about the environment is acquired as the search progresses. The performance of an online
algorithm is measured by its competitive ratio, i.e., the worst-case ratio of its cost with
respect to the offline cost, which is the search time of the optimal algorithm with full a priori
knowledge of the environment and the target placement. Many search problems, especially
for geometric environments, are analyzed from this perspective, in particular when the cost
of the offline solution is just the distance to the target; see [3, 11, 16, 19].

The linear search problem for a single robot was introduced by Beck [6] and Bellman [7].
They proposed an optimal on-line algorithm with search time 9d, where d is the distance
from the origin to the target. This question was extended to the cow-path problem in [2],
in which the searcher has more than two directions to follow, to searching in the plane [3],
and numerous other variations. Bose et al. [10] recently studied a variant of these problems
where upper and lower bounds on the distance to the target are given. On a line, without
this information the time 9d cannot be improved even if the search is performed by a team
of same-speed robots communicating by meeting if all robots have to reach the target [11];
see also [4]. Surprisingly, time 9d can still be achieved by distinct-speed robots if the slowest
robot is at most 3 times slower than the fastest one.

The rendezvous problem has been central to distributed computing for many years. It
was studied in various settings (cf. [22]), but even for environments as simple as a line or a
ring, optimal solutions are not always known. Feasibility of the rendezvous problem is often
determined by a symmetry breaking process, which must prevent the robots from falling
into an infinite pattern avoiding the meeting. Searching and rendezvous may be viewed as
problems with opposite objectives. Searching is a game between a searcher, who tries to
find the target as fast as possible and the adversary, who knows the searching strategy and
attempts to maximize the search time by its choice of the environment parameters, target
placement (or its escape route), etc. Hence in searching, the two players have contradictory
goals. In rendezvous the two players collaborate, trying to quickly find one another (see [1]).
Contrary to the searching problem, the rendezvous destination is not given in advance but it
may be decided by the robots.

Equivalent to our setting are evacuation problems, where a collection of mobile robots
need to find an unknown exit in the environment and the exit must be reached by all involved
robots. In previous research usually robots travelling at the same speed were considered (cf.
[11, 12]). For other problems considering robots with distinct speeds (e.g., the patrolling
problem studied in [13, 20]), only partial results were obtained. Optimal patrolling using
more than two robots on a ring [13], or more than three robots on a segment [20], is unknown
in general and all intuitive solutions have been proved sub-optimal for some configurations of
the speeds of the robots. Another example is the long-standing lonely runner conjecture [23],
concerning k entities moving with constant speeds around a circular track of unit-length.
If the speeds are pairwise different, the conjecture states that at some moment in time all
runners are located equidistantly on the cycle. The conjecture is open in general, having
been verified for up to 7 runners [5].

1.2 Our results
In this paper, we consider the linear search problem for two robots equipped with distinct
maximal speeds. For the convenience of presentation we scale their speeds so that the speed
of the faster robot is 1 and the slower one is 0 < v ≤ 1.

In the model with communication by meeting, we propose an optimal strategy for any
value of v. And in particular our strategy works in time 1+3v

v−v2 d, for any v ≤ 1
3 for the target

being placed at unknown distance d from the origin. The remaining part of the spectrum
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has been covered in [11] where the authors provide: an implicit (in the limit) argument for
the lower bound 9d when the robots share the maximal speed 1; and they show that this
bound can be met from above when the slower robot’s maximal speed is at least 1

3 .

In the model with wireless communication, we design a strategy achieving search time
2+v+

√
v2+8v

2v d. We show that this is optimal for any v ≥ 1
6 . Note that for v >

√
17−4 ≈ 0.123

our strategy for wireless communication outperforms the optimal strategy for communication
by meeting, which shows that the feature of wireless communication is useful. On the other
hand, one can observe that this feature becomes less significant as v decreases. For v = 1, the
optimal algorithm for wireless communication is 3 times faster than the optimal algorithm
for communication by meeting whereas for v = 1

6 , it is only 1.08 times faster.

2 Preliminaries

For any algorithm A, we denote by t(A, p) the search time of algorithm A if the target is
located at point p. We define τ(A) = lim sup|p|→∞

t(A,p)
|p| as the main efficiency measure of

the algorithms. Whereas all the lower bounds we derive hold for the efficiency measure τ(A),
all the algorithms A we design actually satisfy the stronger property t(A, p) ≤ τ(A)|p| for
every point p ∈ R (sometimes by making infinitesimal moves as the time approaches 0). In
consequence, our bounds are in particular directly adaptable to a setting where the target
placement must lie at a distance at least x from the origin, where x is a fixed constant, and
one measures performance of the algorithms using sup{ t(A,p)|p| : |p| > x}.

Having fixed an algorithm A for a set R of robots, each robot Γ ∈ R follows a fixed
trajectory while it is unaware of the location of the target. We use Γ(t) to denote the
position of robot Γ at time t provided that the target location is not known to the robot.
Our lower bounds rely on the analysis of the progress speeds lim supt→∞

|Γ(t)|
t . The largest

of these values over Γ ∈ R is called the overall progress speed. For each point p, the time
T (p) = min{t : ∃Γ∈RΓ(t) = p} is called the discovery time of p (it is the first moment
when any robot visits p) and φ(p) denotes the set of robots which visit p at time T (p). To
simplify notation, we will not make explicit the dependence of Γ(t), T (p), and φ(p) on the
algorithm A. Our results are primarily designed for a set R of two of robots, denoted R
and r. Their speed limits are 1 and v (v ≤ 1), respectively.

3 Communication by meeting

In this model, once a robot finds the target, it must walk to meet the other robot, and then
the robots travel to the target. Naturally, the schedule consists of three phases: exploration
phase while the target is unknown, pursuit phase where the informed robot chases after the
other one in order to tell it about the target, and target phase when both robots walk to
the target location. Recall that for robots with equal speeds, one of the possible optimal
solutions consists in both robots following together a cow-path trajectory [4, 11], thus the
pursuit and target phases may be nonexistent.

3.1 The upper bound

A robot following a standard cow-path trajectory visits, in order of increasing k, the points
pk := (−2)k, k ∈ Z, on alternating sides of the origin, travelling at full speed between
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t

0
pkpk+1 pk+2

R r

t

0
pkpk+1 pk+2

R r

Figure 1 Illustration of algorithm A∗ before target detection (left), and when the target has
been located (right). The horizontal axis represents the line searched and the vertical axis represents
the time. The empty circle denotes the target discovery. Double and single solid lines represent the
trajectories of the faster and the slower robot, respectively. Dashed lines correspond to the overall
progress speed and dotted lines to the search time.

consecutive points pk.1 In this strategy, the robot discovers new locations after it passes pk on
the way from pk+1 to pk+2. This happens from time tk := |pk|+2

∑k+1
j=−∞ |pj | = 9 ·2k = 9|pk|

to t′k+2 := |pk+2|+2
∑k+1
j=−∞ |pj | = 12·2k = 3|pk+2|. Consequently, the search time is bounded

from above by 9|p|.
As observed by Chrobak et al. [11], this strategy generalizes to a collection of two robots

with speed limits 1 and 1
3 . Both robots follow the cow-path trajectory at their maximal

speed, which means that they meet in pk at time tk = 3t′k. When the faster robot R discovers
the target at a point p between pk and pk+2, it pursues the slower robot r and brings it to
the target, which turns out to be feasible within time 9|p|; see Fig. 1.

We extend this strategy to allow v < 1
3 as the speed limit of the slower robot r. We insist

on the two robots meeting in points pk at times tk for adjusted values pk and tk. The smaller
speed v of r allows R to travel further before going back to pk. More formally, we increase
the ratio |pk+1|/|pk| and instead of taking pk = (−2)k, we set pk = (−c)k for some c > 2. We
still make both robots visit consecutive points pk at their full speeds, and we choose c so that
they meet in pk while r is there for the first time and R for the second time. A condition
inductively forcing the meeting at pk to be followed by a meeting in pk+1 can be expressed
as 1

v |pk+1 − pk| = tk+1 − tk = |pk+1 − pk+2|+ |pk+2 − pk|, i.e., 1
v (c+ 1) = 2c2 + c− 1. This

gives c = 1+v
2v , which we use for our algorithm A∗.

The following theorem bounds the search time by robots using this strategy.

I Theorem 1. For the algorithm A∗ and every point p ∈ R, we have:

t(A∗, p) = 1+3v
v−v2 |p| if v ≤ 1

3 , (1)

t(A∗, p) = 9|p| if 1
3 < v ≤ 1. (2)

Proof. First, let us show (1). Let us choose k so that the target p is located between pk and

1 Note that the sequence (pk)k∈Z is understood as prescribing infinitesimally small moves for the robot in
the two directions around the origin at the beginning of the execution (when time is in the neighborhood
of 0, i.e., at the beginning of the execution, the robot visits points pk for k in the neighborhood of −∞,
hence it makes infinitesimal moves). Algorithm A∗, described below, has similar behavior. In order
to avoid this, we could start the sequence pk from any finite k (instead of −∞). This would result in
small constant additive terms appearing throughout the calculations, but the asymptotic behavior of
the algorithm and in particular the efficiency measure τ(A) would be unaffected.
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Algorithm A∗ [for two robots with communication by meeting]

1. Until the target is located, both robots visit, in order of increasing k, the points pk = (−c)k
for all k ∈ Z, where c = 1+ṽ

2ṽ and ṽ = min(v, 1
3 ). Robot R moves with speed 1 between

consecutive points, and robot r with speed ṽ.
2. When R finds the target, it moves with speed 1 to meet and notify r.
3. After the meeting, robots move together to the target at speed ṽ.

pk+2. The meeting time in pk is tk = 1
v

(
|pk|+2

∑k−1
j=−∞ |pj |

)
= 1

v c
k
(

1 + 2
c−1

)
= 1

v c
k c+1
c−1 =

ck 1+3v
v−v2 . Suppose that |p− pk| = δ. After meeting r in pk, robot R needs time δ to discover

the target. At that time, the distance between the robots is δ(1 + v) since they were going
in opposite directions with their maximal speeds until time tk + δ. Then, the faster robot
pursues the slower one. With the speed difference of 1− v this takes δ(1+v)

1−v units of time.
Next, the robots go back to the target at speed v which requires time δ(1+v)

v−v2 , i.e., 1
v times

more than the pursuit. In total, the time between tk and the moment when both robots
reach the target is δ + δ(1+v)

1−v + δ(1+v)
v−v2 = δ v−v

2+v+v2+1+v
v−v2 = δ 1+3v

v−v2 . Since tk = |pk| 1+3v
v−v2 , the

total search time is t(A, p) = (|pk|+ δ) 1+3v
v−v2 = |p| 1+3v

v−v2 , as claimed.
To show (2), we simply observe that, for v = 1

3 , we have 1+3v
v−v2 = 9. Note that for v > 1

3 ,
the searcher moving at velocity 1

3 could increase its speed to v, but no additional gain in
efficiency is possible (see the lower bounds in [11, 4] and in Section 3.2). J

3.2 The lower bound
We show that the strategy from Section 3.1 is optimal, achieving the best possible bound
on the search time. In fact, some results of this section are presented in order to work for
collections R of any number of robots. Consequently, in this section v denotes the slowest
maximal speed among all the robots in R, and r denotes some robot with maximal speed
v. We also define τ∗ = 1+3v

v−v2 and, for any fixed algorithm A, the overall progress speed
w = maxΓ∈R lim supt→∞

|Γ(t)|
t . Note that the functions Γ and w depend on A, but we do

not make this relation explicit in our notation.
Before we proceed with the actual lower bound, let us prove a lemma relating the search

time and the overall progress speed for any collection R of robots.

I Lemma 2. For any algorithm A and any collection R of robots with speeds not exceeding
1, we have τ(A) ≥ 1+3w

w−w2 , when w ∈ (0, 1). If w = 0 or w = 1, then τ(A) cannot be bounded
from above by any finite number.

Proof. We proceed with a proof by contradiction. That is, we suppose that τ(A) can be
bounded from above if w ∈ {0, 1}, and that τ(A) < 1+3w

w−w2 if w ∈ (0, 1). In both cases, the
assumption implies the existence of a finite τ̄ such that τ(A) < τ̄ and (w − w2) τ̄ < 1 + 3w.
The former condition yields that there exists d0 such that t(A, p) < τ̄ |p| for |p| ≥ d0. We
will obtain a contradiction with respect to the latter condition.

Let us fix ε > 0. Note that there exists t0 such that |Γ(t)|
t ≤ w + ε for every t ≥ t0 and

every robot Γ ∈ R. Also, there exists a robot Γ and arbitrarily large time values t such that
|Γ(t)|
t ≥ w − ε. We fix such a robot Γ and time t, which satisfies t ≥ (τ̄ − 1) max(d0, t0).
Let p = Γ(t) and dp = |p|. Also, consider a point q at distance dq = t+dp

τ̄−1 from the origin
on the opposite side of p; see Fig. 2. Note that dq ≥ d0, so t(A, q) < τ̄dq.
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Suppose that robot Γ at time t cannot exclude the possibility that the target is located at
q. Then, it must be able to reach q by the deadline, at t(A, q) < τ̄dq, starting at time t from
point p. The robot cannot exceed the speed limit of 1, so we conclude τ̄ dq − t > dp + dq.
However, the distance dq is defined so that τ̄ dq − t = dp + dq, a contradiction.

Consequently, robot Γ must already know at time t that the target is not at point q. Since
robots can only communicate by meeting and their speeds are limited by 1, this information
needs dq + dp time to travel from q to p. In other words, some robot Γ′ must have visited q
at time t′ ≤ t− dp − dq.

On the other hand, the speed limit of Γ′ is at most 1, so we have t′ ≥ dq ≥ t0. Hence, we can
use a stronger bound using progress speed: dq = Γ′(t′) ≤ t′(w + ε). Consequently, we obtain
dq ≤ (w + ε)(t− dp − dq). Plugging in the definition of dq, after some term rearrangements,
we get (1+w+ε)(t+dp) ≤ (t−dp)(w+ε)(τ̄−1). Equivalently, dp ≤ t (w+ε)(τ̄−2)−1

(w+ε)τ̄+1 . However,
recall that time t was chosen so that dp ≥ (w − ε)t. Therefore, w − ε ≤ (w+ε)(τ̄−2)−1

(w+ε)τ̄+1 .

As ε > 0 can be chosen arbitrarily close to 0, we conclude that w ≤ w(τ̄−2)−1
wτ̄+1 , that is

(w − w2)τ̄ ≥ 1 + 3w. This contradicts the definition of τ̄ . J

The following immediate corollary gives an alternative proof of the optimality of A∗ for
v ≥ 1

3 . (Recall the lower bound of 9 in [11]; see also [4].)

I Corollary 3. For any algorithm A and any collection R of robots with speeds not exceeding
1, we have τ(A) ≥ 9.

Proof. It suffices to observe that 1+3w
w−w2 ≥ 9 for any w ∈ (0, 1). J

We continue the analysis assuming that v < 1
3 and w ∈ (0, 1). We provide a series of

lemmas, each imposing certain constraints on hypothetical algorithms A satisfying τ(A) < τ∗.
Eventually, we deduce that some of these constraints exclude each other. Due to space
restrictions, in the main body of the paper, we only sketch most of the proofs, referring to
Appendix A for full arguments, accompanied with figures illustrating them.

I Lemma 4. If v < 1
3 and τ(A) < τ∗, then w < 1−v

1+3v .

1
τ̄ ≈ w≈ w

Γ

p q

1

1

0

t′

t

τ̄dq

dp dq

Figure 2 Illustration of notions used in the proof of Lemma 2. Rays starting from the origin as
well as thick lines representing constraints are all annotated with the corresponding speeds. Here,
robot Γ, while in p at time t, must know that the target is not in q, or it must be able to reach q
before the deadline.
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Proof. Suppose that w ≥ 1−v
1+3v . Note that w ≥ 1−v

1+3v >
1− 1

3
1+1 = 1

3 (because v < 1
3 ) and

the function f(x) = 1+3x
x−x2 is increasing on ( 1

3 , 1). Thus 1+3v
v−v2 = f( 1−v

1+3v ) ≤ f(w) = 1+3w
w−w2 .

Consequently, Lemma 2 implies τ(A) ≥ f(w) ≥ 1+3v
v−v2 = τ∗. J

I Lemma 5. If v < 1
3 and τ(A) < τ∗, then lim supt→∞

|r(t)|
t < vwτ∗−wv−v−w

vwτ∗+1 .

1
τ̄ ≈ wdp

t

r

p q

1

v

0

t′

t

τ̄dq

dp dq

Figure 3 Illustration of notions used in the proof of Lemma 5. The slowest robot r, while in p at
time t, must know that the target is not in q or it must be able to reach q before the deadline.

Proof sketch. We choose an arbitrarily large time t. Let p = r(t) and dp = |p|. We also
consider a point q at distance dq = vt+dp

vτ̄−1 from the origin on the opposite side of p. Here, τ̄
is an arbitrary value such that τ(A) < τ̄ < τ∗ and 1

v < τ̄ < τ∗ = 1
v + 4

1−v . We may assume
t(A, q) < τ̄dq if t is chosen sufficiently large.

The distance dq is defined so that 1
v (dq + dp) + t = τ̄ dq. Hence, it is impossible for the

slower robot r to reach point q before τ̄ dq > t(A, q), starting from p at time t. Consequently
r already knows at time t that the target is not located at q. Hence, some robot must have
visited q at time t′ ≤ t− dp − dq, where the inequality is due to the fact that information
cannot travel faster than at speed 1. On the other hand, the progress speed w gives an upper
bound on dq

t′ as t′ approaches infinity. We combine these two inequalities to bound dp

t from
above and derive the claimed result. J

I Corollary 6. If v < 1
3 and τ(A) < τ∗, then lim supt→∞

|r(t)|
t < 1

τ∗ . In particular, the set
{p : r ∈ φ(p)} of points discovered by r is bounded.

Proof sketch. By Lemma 4, we may assume w < 1−v
1+3v . Upon substituting this inequality

into the upper bound of Lemma 5, this implies vwτ∗−wv−v−w
vwτ∗+1 < 1

τ∗ . Thus, the slowest robot
visits sufficienly far points only after the deadline. To arrive at some location earlier, it must
be notified by some other robot about the target location. J

While Lemmas 4 and 5 and Corollary 6 hold for arbitrary collections of robots, this is
not the case for the following lemma.

I Lemma 7. If v < 1
3 and τ(A) < τ∗, then lim supt→∞

|r(t)|
t ≥ vW+v+W−vWτ∗

vWτ∗+1 where
W = w−w2

1+3w .
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Proof sketch. By Corollary 6, we may assume that the faster robot discovers all sufficiently
far locations. Thus, its own progress speed is equal to the overall progress speed w. Moreover,
the trajectory of R can be interpreted as a search algorithm for a collection R = {R}
consisting of the faster robot R only. The search time of this algorithm is T (p), and therefore
Lemma 2 lets us conclude that lim sup|p|→∞

T (p)
|p| ≥

1+3w
w−w2 = 1

W .
We choose a sufficiently far point p such that T (p)

|p| is arbitrarily close to 1
W and set

dp = |p|. By Corollary 6, we may assume that the slower robot does not reach p on its own
before the deadline. Thus, once the faster robot discovers the target located at p, its optimal
strategy is to pursue the slower robot (moving at speed 1) and then bring it to the target
(moving at speed v). We define t′ and q = r(t′) as the time and location where R catches
r. The search deadline is earlier than τ∗dp, which lets us derive a lower bound on |q|t′ and
consequently bound the progress speed of the slower robot from below. J

I Lemma 8. If v < 1
3 and τ(A) < τ∗, then w ≥ 1−v

1+3v .

Proof sketch. We obtain vwτ∗−wv−v−w
vwτ∗+1 > vW+v+W−vWτ∗

vWτ∗+1 using Lemmas 5 and 7. Since τ∗
and W are defined using v and w only, this is an inequality on these two variables. It yields
w ≥ 1−v

1+3v as shown in the full proof. J

Lemmas 4 and 8 give conflicting constraints for any algorithm A such that τ(A) < τ∗,
which implies the following theorem.

I Theorem 9. For any line search algorithm A, if v < 1
3 , then τ(A) ≥ τ∗.

4 Wireless communication

In this model, we have only the exploration phase and the target phase. We show that, for
robots travelling at speeds with low relative difference (i.e., if v ≥ 1

6 ), in order to achieve the
optimal search time, both robots need to participate in the exploration.

1
τ∗ ≈Wdq

t′

q p

R
r

1

v

0

t
t′

τ∗dp

dq

dp

Figure 4 Illustration of notions used in the proof of Lemma 7. The faster robot R, having
discovered at time t the target located at p, must be able to catch the slower robot r and bring it to
the target before the deadline.
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t

0

r R

t

0

r R

t

0
Rr

Figure 5 Illustration of algorithm B∗ before target discovery (left), when the target is discovered
by r (middle), and by R (right). The horizontal axis represents the line searched and the vertical
axis represents the time. The empty circle denotes the target discovery. Double and single solid lines
represent the trajectories of the faster and the slower robot, respectively. Dashed lines correspond
to the progress speeds of the two robots and dotted lines to the search time.

Algorithm B∗ [for two robots with wireless communication]

1. Until the target is discovered, the two robots move in opposite directions. Robot r moves
with its maximal speed v and robot R with speed v′ = 1

2 (
√
v2 + 8v − v).

2. When either robot finds the target, it notifies the other one using wireless communication
and the other robot moves to the target using its maximal speed.

4.1 The upper bound

The optimal strategy for two robots travelling at the same speed [4] is very simple: Both
robots explore in opposite directions at full speeds. When a robot learns that the other robot
has found the target, it changes its direction towards the target.

Let us analyze the performance of this strategy for robots with distinct speeds. The total
search time is a sum of three terms: the time for a robot to discover the target, the time for
the other robot to go back to the origin and the time for that robot to reach the target. We
consider two cases. First, suppose that the faster robot R discovers the target at distance d
from the origin. Then the total search time is d+ d+ 1

vd = (2 + 1
v )d. On the other hand, if

the slower robot r discovers the target, the search time is worse: 1
vd+ 1

vd+ d = ( 2
v + 1)d.

Intuitively, the faster robot explores too fast and it thus spends too much time going
back to the origin. Hence, we limit the exploration speed of R to v′ < 1. When it already
knows the target, the faster robot is still allowed to use its full speed equal to 1. Now, the
total search times are 1

v′ d+ 1
v′ d+ 1

vd = ( 2
v′ + 1

v )d and 1
vd+ v′

v d+ d = 1+v′+v
v d, respectively.

We choose v′ to minimize the maximal of these two quantities. As they are, respectively, a
decreasing and an increasing function of v′, for the optimal value v′ these terms are equal to
each other, i.e., v′ satisfies 1+v′+v

v = 2
v′ + 1

v or, equivalently, v′2 + v′v = 2v.
The following fact, proved in Appendix B, gives the right values of v′ and of the search

time τ∗. This lets us complete the description of the algorithm B∗ (see Fig. 5), whose analysis
follows immediately from the discussion above.

I Fact 10. For any speed v ∈ (0, 1], define τ∗ = 2+v+
√
v2+8v

2v and v′ =
√
v2+8v−v

2 . We
have: (a) τ∗ = 1+v+v′

v , (b) τ∗ = 1
v + 2

v′ , and (c) v′2 + v′v = 2v. Moreover, if v ≥ 1
6 , then

3v ≥ v′ ≥ 1
2 .

I Theorem 11. For the algorithm B∗ we have t(B∗, p) = τ∗|p| for every p ∈ R.
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1
τ∗ v≈ v′ ≈ v′

R

p q

1

1

0

t

t′

τ∗dq

dp dq

Figure 6 Illustration of notions used in the proof of Lemma 12. The faster robot R, while in p at
time t, must know that the target is not in q or it must be able to reach q before the deadline. For
the former, either the slower robot r must have visited q prior to t, or R must have visited q on its
own and traveled all the way to p.

4.2 The lower bound
By Theorem 11, for all points p we have t(B∗, p) = τ∗|p| and thus τ(B∗) = τ∗. We will show
that for v ≥ 1

6 no algorithm B admits a smaller value of τ(B). As in Section 3.2, we impose
some constraints on the hypothetical algorithms, two of which are going to be inconsistent.
Due to space restrictions, here we present proof sketches only; full arguments are provided in
Appendix C.

I Lemma 12. If v ≥ 1
6 and τ(B) < τ∗, then lim supt→∞

|R(t)|
t ≤ v′.

Proof sketch. For a proof by contradiction we suppose that the progress speed of R exceeds
v′. Then, we may choose arbitrarily large time t such that |R(t)|

t > v′. Let p = R(t) and
dp = |p|. We also consider a point q at distance dq = tv from the origin on the opposite side
of p; see Fig. 6. If the time t is chosen sufficiently large, we may assume that t(B, q) < τ∗dq.

The distance dq is defined so that the robot R is unable to reach q prior to the deadline
starting from p at time t. Thus, some robot must visit point q at time t′ < t. The speed
restriction for the slower robot is too strong for it to arrive at q early enough. Therefore,
it must be the faster robot R which discovers q. Consequently, t′ must be small enough
for R to travel from q to p during time t− t′. On the other hand, the progress speed gives
a lower bound on t′ as t approaches infinity. We combine these two bounds to derive a
contradiction. J

I Lemma 13. If v ≥ 1
6 and τ(B) < τ∗, then the set {p : r ∈ φ(p)} of points discovered by

the slower robot r is bounded.

Proof sketch. For a proof by contradiction, we suppose that there are arbitrarily far points
discovered by robot r. We choose such a point p at distance dp = |p| from the origin. We
also consider a point q at distance dq = 2dp

τ̄v−1 from the origin on the opposite side of p. Let
τ̄ be an arbitrary value such that τ(B) < τ̄ < τ∗ and 1

v < τ̄ < τ∗ = 1
v + 2

v′ . We may assume
t(B, p) < τ̄dp and t(B, q) < τ̄dq if p is chosen sufficiently far.

We analyze the discovery times t = T (p) and t′ = T (q), and distinguish two cases
depending on which is smaller. If t ≤ t′, then robot r, while in p at time t, must be able to
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reach q before the deadline. The distance dq is defined so that it is unable to do so if t ≥ dp

v ,
and the latter inequality easily follows from the speed limit of the slower robot r.

On the other hand, if t′ ≤ t, then the robot which visits q at time t′ must be able to
reach p before τ̄ dp. This gives an upper bound on t′ ≤ τ̄ dq − dq − dp due to the speed limits.
Combined with the bound of Lemma 12 on the progress speed, this yields a contradiction if
the initial point p is chosen sufficiently far. J

I Lemma 14. If v ≥ 1
6 and τ(B) < τ∗, then the set {p : r ∈ φ(p)} is unbounded.

Proof sketch. For a proof by contradiction, we suppose that the set is bounded. Then,
the faster robot cannot go to infinity in one direction only, and it must pass the origin
at arbitrarily large moments of time. Let us fix a sufficiently large t such that R(t) = 0.
Consider two points pl and pr at distance d = tv

τ̄v−1−v on each side of the origin. Let τ̄ be
an arbitrary value such that τ(B) < τ̄ < τ∗ and 1 + 1

v < τ̄ < τ∗ = 1 + 1
v + v′

v . If t is chosen
large enough, we may assume that t(B, pl) < τ̄d and t(B, pr) < τ̄d and that both points must
be discovered by R.

Since R(t) = 0, points pl and pr can only be discovered no later than at time t − d or
no sooner than at time t+ d. The distance d is defined so that the slower robot r starting
from any position at time t+ d is either unable to reach pl or unable to reach pr. Hence, one
of these points must be discovered (by R) at time t′ ≤ t − d. For sufficiently large t, this
contradicts the bound of Lemma 12 on the progress speed. J

When combined, Lemmas 13 and 14 exclude any algorithm with τ(B) < τ∗.

I Theorem 15. For any line search algorithm B, if 1
6 ≤ v ≤ 1, then τ(B) ≥ τ∗.

5 Conclusions and open questions

Clearly, any search strategy for the communication by meeting model may also be used in
the wireless communication model. The bound of 1+3v

v−v2 obtained in Section 3.1 outperforms
2+v+

√
v2+8v

2v from Section 4.1 for small values of v. More precisely, an interested reader

1
τ̄

1
τ̄v ≈ v′

r R

p q

v

1

0

t = t′

τ̄ dp

τ̄ dq

dp dq

Figure 7 Illustration of notions used in the proof of Lemma 13. The slower robot r, while
discovering p at time t, must know that the target is not in q or it must be able to reach q before
the deadline. For the former, the robot discovering q at t′ prior to t, must be able to reach p before
the deadline.
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may observe that for v ≤
√

17− 4 ≈ 0.123 we have 1+3v
v−v2 ≤ 2+v+

√
v2+8v

2v . This immediately
shows that our strategy from Section 4.1 is not optimal in general. We conjecture that for
v ≤
√

17− 4 some variation of the strategy from Section 3.1, when the faster robot is the
only one responsible for exploration, will be optimal also for the wireless communication
model. (Note that for general target points, it is not possible to improve the performance of
the algorithm from Section 3.1 for wireless communication just by making the slower robot
change direction immediately once the target is discovered by the faster robot.) As both
strategies are fundamentally different, it would also be interesting to see what happens for
the speeds

√
17− 4 < v < 1

6 .
The above fact may be viewed from another, perhaps more interesting perspective. Two

unit-speed robots perform linear search in 9d time when communicating by meeting and in 3d
time for the less restrictive wireless communication. Is it true that, for significantly different
robot speeds, the wireless communication model loses its advantage over the communication
by meeting model, and the linear search takes the same time in both models?

Another possible area of research is to extend the considerations to a larger collection of
distinct-speed robots for both communication models.
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A Full proofs for Section 3.2

I Lemma 5. If v < 1
3 and τ(A) < τ∗, then lim supt→∞

|r(t)|
t < vwτ∗−wv−v−w

vwτ∗+1 .

Proof. Take τ̄ such that τ(A) < τ̄ < τ∗ and 1
v < τ̄ < τ∗ = 1

v + 4
1−v . Then there exists d0

such that t(A, p) < τ̄ |p| if |p| ≥ d0. Fix ε > 0. There exists t0 such that |R(t)|
t ≤ w + ε for

every t ≥ t0. Let us choose time t so that t ≥ (τ̄ − 1
v ) max(d0, t0).

Let p = r(t) and dp = |p|. Consider a point q at distance dq = vt+dp

vτ̄−1 from the origin, on
the other side of the origin than point p. Note that dq ≥ vt

vτ̄−1 ≥ d0, so t(A, q) < τ̄dq.
Suppose that the slowest robot r does not know at time t whether the target is in q.

Then it must be able to reach q earlier than τ̄ dq starting from p at time t. It cannot exceed
the speed limit v, so we must have (τ̄ dq − t)v > dp + dq. However, dq is defined so that
(τ̄ dq − t)v = dp + dq, a contradiction.

Thus, the slowest robot r must know at time t that the target is not at point q. By the
speed limit, this information needs dp + dq time to travel from q to p. In other words, some
robot must have visited q at time t′ ≤ t− dp − dq.
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On the other hand, we have t′ ≥ dq ≥ t0 so dq ≤ t′(w + ε). Consequently, dq ≤
(w + ε)(t− dp − dq). Taking into account the definition of dq, after term rearrangements we
get

(1 + w + ε)(vt+ dp) ≤ (t− dp)(w + ε)(vτ̄ − 1).

Equivalently, |r(t)| = dp ≤ t (vτ̄−v−1)(w+ε)−v
vτ̄(w+ε)+1 .

Since t can be any sufficiently large positive real number, we have

lim sup
t→∞

|r(t)|
t ≤ (vτ̄−v−1)(w+ε)−v

vτ̄(w+ε)+1 .

By freedom to choose arbitrary ε > 0, we infer

lim sup
t→∞

|r(t)|
t ≤ vwτ̄−vw−w−v

vwτ̄+1 < vwτ∗−vw−w−v
vwτ∗+1

where the last inequality follows from monotonicity and τ̄ < τ∗. J

I Corollary 6. If v < 1
3 and τ(A) < τ∗, then lim supt→∞

|r(t)|
t < 1

τ∗ . In particular, the set
{p : r ∈ φ(p)} of points discovered by r is bounded.

Proof. Note that

f(x) = (vτ∗−v−1)x−v
vτ∗x+1 = ( 1+3v

1−v −v−1)x−v
1+3v
1−v x+1 = v((3+v)x−(1−v))

(1+3v)x+(1−v)

is an increasing function for x > 0, since (3 + v) · (1− v) + (1 + 3v) · (1− v) > 0. By Lemma 4
we may assume w < 1−v

1+3v . Combining f(w) < f( 1−v
1+3v ) with Lemma 5 gives

lim sup
x→∞

|r(x)|
x < f(w) < f( 1−v

1+3v ) = v((3+v) 1−v
1+3v−(1−v))

(1+3v) 1−v
1+3v +(1−v) = v( 3+v

1+3v−1)
2 = 2v−2v2

2(1+3v) = 1
τ∗ .

Consequently, lim supx→∞
|r(x)|
x < 1

τ∗ .
In particular, for any large enough |p|, if r ∈ φ(p), we would have T (p) > τ∗|p|, a

contradiction. (Recall that T (p) denotes the discovery time of p.) J

I Lemma 7. If v < 1
3 and τ(A) < τ∗, then lim supt→∞

|r(t)|
t ≥ vW+v+W−vWτ∗

vWτ∗+1 where
W = w−w2

1+3w .

1
τ̄ ≈ wdp

t

r

p q

1

v

0

t′

t

τ̄dq

dp dq

Figure 8 Illustration of notions used in the proof of Lemma 5. The slowest robot r, while in p at
time t, must know that the target is not in q or it must be able to reach q before the deadline.



16 Linear search by a pair of distinct-speed robots

Proof. Recall that there exists d0 such that t(A, p) < τ∗|p| if |p| ≥ d0. By Corollary 6,
lim supt→∞

|r(t)|
t < 1

τ∗ , so there exists t0 such that |r(t)|t < 1
τ∗ for every t > t0. Moreover, we

have y := sup{|p| : r ∈ φ(p)} <∞ and thus w = lim supt→∞
|R(t)|
t .

Note that the trajectory of R can be interpreted as a search algorithm for a collection of
R = {R} of one robot. Its search time is equal to its discovery time T (p) and by Lemma 2
we can conclude that lim sup|p|→∞

T (p)
|p| ≥

1+3w
w−w2 = 1

W . In other words, for every ε > 0 there
exist arbitrarily far points p such that t := T (p) ≥ |p|

W+ε . We fix ε and choose p so that
dp = |p| satisfies dp ≥ max(d0, y) and dp ≥ t0v.

The slower robot has strictly less than dpτ∗ − t time to get to p from time t if the target
is located there. Since dp > t0v, the slower robot cannot visit p prior to the deadline without
knowing that the target is at p. Thus, the faster robot must meet the slower one at some
time t′, t < t′ < dpτ

∗ and then the two robots shall go to the target with speed v.
Let q = r(t′) and let dq = |q|. We have dpτ∗ − t′ > 1

v (dp − dq) and t′ − t ≥ dp − dq, i.e.,
dq

t′ > v − dp(vτ∗−1)
t′ and dq

t′ ≥
dp+t
t′ − 1. Taking an appropriate convex combination of these

two inequalities, we conclude

dq

t′

( 1
dp(vτ∗−1) + 1

dp+t
)
≥ v

dp(vτ∗−1) −
1

dp+t ,

i.e.,
|r(t′)|
t′ = dq

t′ ≥
v(dp+t)−dp(vτ∗−1)
dp+t+dp(vτ∗−1) = vdp+tv+dp−dpvτ

∗

dpvτ∗+t .

The right-hand side is an increasing function of t, since v · dpvτ∗ − (vdp + dp − dpvτ∗) =
dp(v + 1)(vτ∗ − 1) > 0. Thus, we can apply t ≥ dp

W+ε to obtain

|r(t′)|
t′ ≥

v(W+ε)+v+(W+ε)−v(W+ε)τ∗
v(W+ε)τ∗+1 .

Since t′ > t and t can be chosen arbitrarily large, we can replace the left-hand side with
lim supt′→∞

|r(t′)|
t′ and, since ε can be chosen arbitrarily small, we obtain

lim sup
t→∞

|r(t)|
t ≥ vW+v+W−vWτ∗

vWτ∗+1

as claimed. J

1
τ̄ ≈Wdq

t′

q p

R
r

1

v

0

t
t′

τ̄ dp

dq

dp

Figure 9 Illustration of notions used in the proof of Lemma 7. The faster robot R, having
discovered at time t the target located at p, must be able to catch the slower robot r and bring it to
the target before the deadline.
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I Lemma 8. If v < 1
3 and τ(A) < τ∗, then w ≥ 1−v

1+3v .

Proof. Combining Lemmas 5 and 7, we get

vwτ∗ − wv − v − w
vwτ∗ + 1 >

vW + v +W − vWτ∗

vWτ∗ + 1 .

Expanding with the definition of τ∗ and W gives

(3 + v)w − (1− v)
w(1 + 3v) + (1− v) >

1− v −W (3 + v)
W (1 + 3v) + (1− v) = 1− v − 4vw + (3 + v)w2

1− v + 4w − (1 + 3v)w2 .

Note that the denominators are positive so the following inequality is equivalent.

((3 + v)w − (1− v))(1− v + 4w − (1 + 3v)w2) >
(1 − v − 4vw + (3 + v)w2)(w(1 + 3v) + (1 − v)).

The corresponding polynomial has roots at w ∈ {1, 1−v
1+3v ,−

1−v
3+v }. Thus, the (strict)

inequality either holds in the whole interval [0, 1−v
1+3v ) or in none of these points. The left-hand

side has a negative coefficient with w0 while the right-hand side has a positive one, so this
inequality is false for w = 0, and thus for every w ∈ [0, 1−v

1+3v ). Consequently, w ≥ 1−v
1+3v , as

claimed. J

B Proof of Fact 10

I Fact 10. For any speed v ∈ (0, 1], define τ∗ = 2+v+
√
v2+8v

2v and v′ =
√
v2+8v−v

2 . We
have: (a) τ∗ = 1+v+v′

v , (b) τ∗ = 1
v + 2

v′ , and (c) v′2 + v′v = 2v. Moreover, if v ≥ 1
6 , then

3v ≥ v′ ≥ 1
2 .

Proof. Recall that v′ =
√
v2+8v−v

2 and τ∗ = 2+v+
√
v2+8v

2v . Consequently,

1+v+v′
v = 2+2v+2v′

2v = 2+2v+
√
v2+8v−v

2v = 2+v+
√
v2+8v

2v = τ∗,

as claimed in (a). Similarly we prove (b):

1
v + 2

v′ = 1
v + 4√

v2+8v−v = 1
v + 4(

√
v2+8v+v)

(
√
v2+8v−v)(

√
v2+8v+v) = 1

v + 4(
√
v2+8v+v)

8v = τ∗.

Combining these two equalities, we get (c):

1+v+v′
v = 1

v + 2
v′ ,

v+v′
v = 2

v′ ,

vv′ + v′2 = 2v.

Moreover,
v′

v =
√
v2+8v−v

2v = 4√
v2+8v+v

and
v′ = 4v√

v2+8v+v = 4√
1+8/v+1

.

Consequently, v
′

v and v′ are respectively a decreasing and an increasing function of v. For
v = 1

6 we have 3v = v′ = 1
2 , and thus 3v ≥ v′ ≥ 1

2 for every v ≥ 1
6 . J
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1
τ̄ v≈ v′ ≈ v′

R

p q

1

1

0

t

t′

τ̄ dq

dp dq

Figure 10 Illustration of notions used in the proof of Lemma 12. The faster robot R, while in p
at time t, must know that the target is not in q or it must be able to reach q before the deadline.
For the former, either the slower robot r must have visited q prior to t, or R must have visited q on
its own and traveled all the way to p.

C Full proofs for Section 4.2

I Lemma 12. If v ≥ 1
6 and τ(B) < τ∗, then lim supt→∞

|R(t)|
t ≤ v′.

Proof. Note that there exists d0 such that t(B, p) < τ∗|p| if |p| ≥ d0.
Let vmax = lim supt→∞

|R(t)|
t . For a proof by contradiction suppose vmax > v′. Fix ε > 0

sufficiently small (ε < vmax − v′) and note that there exists t0 such that |R(t)|
t ≤ vmax + ε for

every t ≥ t0. Also, there exist arbitrarily large time values t such that |R(t)|
t ≥ vmax − ε ≥ v′.

We shall choose such t which satisfies t ≥ t0
v and t ≥ d0

v .
Let p = R(t) and dp = |p|. Consider a point q at distance dq = tv from the origin, on the

other side of the origin than point p. Note that dq = tv ≥ d0, so t(B, q) < τ∗dq. Suppose q
was not visited by any robot prior to time t. Then the faster robot R must be able to reach
q earlier than τ∗dq starting from p at time t. As it cannot exceed the speed limit, we have
τ∗dq − t > dp + dq ≥ v′t+ dq. We have dq = tv, so this implies τ∗v − 1 > v′ + v which is a
contradiction since τ∗ = 1 + 1

v + v′

v by Fact 10(a).
Thus, point q must have been visited by some robot at time t′ < t. First, observe that

since v is the maximal speed of the slower robot r, point q has not been visited by r. Note
that t′ ≥ dq = tv because the maximal speed of the faster robot is 1. Consequently, t′ ≥ t0
and thus dq = |R(t′)| ≤ t′(vmax + ε). Additionally, t − t′ ≥ dq + dp, (i.e., t′ ≤ t − dq − dp)
by the speed limit of 1 for the faster robot when moving from q at time t′ to p by time t.
Combining these inequalities we get dq ≤ (t− dq − dp)(vmax + ε), and thus

tv = dq ≤ (t− dq − dp)(vmax + ε) ≤ (t− tv − t(vmax − ε))(vmax + ε),

i.e.,
v ≤ (1− v − vmax + ε)(vmax + ε).

Since ε > 0 could be chosen arbitrarily small, this yields

v ≤ (1− v − vmax)vmax

Note that f(x) = (1 − v − x)x is (strictly) decreasing for x ≥ 1−v
2 , in particular for

x ≥ v′ ≥ 1
2 ≥

1−v
2 . This implies v ≤ f(vmax) < f(v′) = (1 − v − v′)v′ = v′ − 2v ≤ v since

v′ ≤ 3v and v′2 + v′v = 2v by Fact 10. This contradiction concludes the proof. J
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I Lemma 13. If v ≥ 1
6 and τ(B) < τ∗, then the set {p : r ∈ φ(p)} of points discovered by

the slower robot r is bounded.

1
τ̄

1
τ̄v ≈ v′

r R

p q

v

1

0

t = t′

τ̄ dp

τ̄ dq

dp dq

Figure 11 Illustration of notions used in the proof of Lemma 13. The slower robot r, while
discovering p at time t, must know that the target is not in q or it must be able to reach q before
the deadline. For the former, the robot discovering q at t′ prior to t, must be able to reach p before
the deadline.

Proof. Let us choose τ̄ such that τ(B) < τ̄ < τ∗ and 1
v < τ̄ < τ∗ = 1

v + 2
v′ . Then there

exists d0 such that t(B, p) < τ̄ |p| if |p| ≥ d0. Fix ε > 0. By Lemma 12 we can assume that
lim supt→∞

|R(t)|
t ≤ v′, so there exists t0 such that |R(t)|

t ≤ v′ + ε for every t ≥ t0.
For a proof by contradiction suppose there exist points p such that r ∈ φ(p) and the

distances dp = |p| to the origin are arbitrarily large. We choose such a point so that dp ≥ d0
and dp ≥ max(d0, t0) (τ̄v−1)

2 .
Let q be a point at distance dq = 2dp

τ̄v−1 from the origin on the opposite side of p. Note
that dq ≥ d0 so t(B, q) < τ̄dq. Similarly, t(B, p) < τ̄dp.

Let t = T (p) and t′ = T (q). First, suppose that t′ ≥ t, i.e., q was discovered after p.
Then the slower robot while in p at time t must be able to reach q before τ̄ dq. It cannot
exceed its maximal speed v, so we must have (τ̄ dq − t)v > dp + dq, i.e., dq(τ̄ v − 1) > dp + tv.
By the speed limit on the slower robot we have tv ≥ dp, so dq(τ̄ v − 1) > 2dp. However, dq is
defined so that dq(τ̄ v − 1) = 2dp, a contradiction.

Consequently, t′ ≤ t, i.e., one of the robots must have visited q before p was discovered.
Since p was not visited prior to time t′, this robot must be able to reach p before t(B, p) starting
from q at time t′. Recall that we have t(B, p) < τ̄dp. Thus, we must have τ̄ dp − t′ > dp + dq
so that the robot does not exceed the maximal speed 1.

On the other hand, we have t′ ≥ dq ≥ t0 and thus dq ≤ (v′ + ε)t′. Combining these two
inequalities, we get dq

v′+ε ≤ t
′ < τ̄dp− dp− dq. Expanding with the definition of dq, we obtain

2dp

(τ̄v−1)(v′+ε) < (τ̄ − 1)dp − 2dp

τ̄v−1 , i.e., 2(1 + v′ + ε) < (τ̄ − 1)(τ̄ v − 1)(v′ + ε). By the freedom
to choose arbitrarily small ε, we get 2(1 + v′) < (τ̄ − 1)(τ̄ v − 1)v′. The right-hand side is
monotone with respect to τ̄ , so

2(1 + v′) ≤ (τ̄ − 1)(τ̄ v − 1)v′ < (τ∗ − 1)(τ∗v − 1)v′ = 1+v′
v (v + v′)v′.

Consequently, 2v < (v + v′)v′ which contradicts Fact 10. J

I Lemma 14. If v ≥ 1
6 and τ(B) < τ∗, then the set {p : r ∈ φ(p)} is unbounded.
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Figure 12 Illustration of notions used in the proof of Lemma 14. The slower robot r at time t+ d

must either be able to reach both p` and pr before the deadline, or the faster robot R must have
visited one of these points prior to time t+ d, which actually could only happen prior to time t− d.

Proof. Let us choose τ̄ such that τ(B) < τ̄ < τ∗ and 1 + 1
v < τ̄ < τ∗ = 1 + 1

v + v′

v . Then
there exists d0 such that t(B, p) < τ̄ |p| if |p| ≥ d0. Fix ε > 0. By Lemma 12 we can assume
that lim supt→∞

|R(t)|
t ≤ v′, so there exists t0 such that |R(t)|

t ≤ v′ + ε for every t ≥ t0.
For a proof by contradiction, suppose that y = sup{|p| : r ∈ φ(p)} < ∞. This means

that all points farther than y from the origin are discovered by the faster robot R. Thus, R
cannot go to infinity in only one direction. Hence, there exist arbitrarily large time moments
t satisfying R(t) = 0. We shall take such t so that tv

τ̄v−1−v ≥ max(d0, y, t0).
Consider two points pl and pr, both at distance d = tv

τ̄v−1−v to the left and to the right
from the origin, respectively. Note that d ≥ d0 so the target located at pl or pr would need
to be reached earlier than τ̄ d. First, suppose that none of these points has been discovered
prior to time t.

Consider time moment t+ d, which is the earliest moment when one of the points pl, pr
may be discovered. At this time the slower robot must be able to reach both pl and pr before
the time τ̄ d. The distance between these points is 2d, so the robot has to traverse at least
distance d in time strictly less than τ̄ d− t−d. In other words, we must have v(τ̄ d− t−d) > d,
i.e., tv < d(τ̄ v − 1− v). However, d = tv

τ̄v−1−v , a contradiction.
Therefore, at least one of the points pl, pr must have been visited before time t. Since d ≥ y,

this point must have been discovered by the faster robot, which could do that only at time
t′ ≤ t−d. On the other hand, t′ ≥ d ≥ t0, so we have d = |R(t′)| ≤ (v′+ε)t′ ≤ (v′+ε)(t−d).
Expanding with the definition of d, we obtain

tv
τ̄v−1−v ≤ (v′ + ε)(t− tv

τ̄v−1−v ),

i.e.,
v ≤ (v′ + ε)(τ̄ v − 1− 2v).

Since the choice of ε was arbitrary, we get

v ≤ v′(τ̄ v − 1− 2v) < v′(τ∗v − 1− 2v) = v′(v′ − v),

However, by Fact 10, we have v′(v′ − v) = 2(v − vv′) ≤ v. This contradiction concludes the
proof. J
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