
Message Lower Bounds via Efficient Network Synchronization

Gopal Pandurangan∗ David Peleg† Michele Scquizzato∗

July 4, 2016

Abstract

We present a uniform approach to derive message-time tradeoffs and message lower bounds for
synchronous distributed computations using results from communication complexity theory.

Since the models used in the classical theory of communication complexity are inherently asyn-
chronous, lower bounds do not directly apply in a synchronous setting. To address this issue, we show
a general result called Synchronous Simulation Theorem (SST) which allows to obtain message lower
bounds for synchronous distributed computations by leveraging lower bounds on communication com-
plexity. The SST is a by-product of a new efficient synchronizer for complete networks, called σ, which
has simulation overheads that are only logarithmic in the number of synchronous rounds with respect
to both time and message complexity in the CONGEST model. The σ synchronizer is particularly effi-
cient in simulating synchronous algorithms that employ silence. In particular, a curious property of this
synchronizer, which sets it apart from its predecessors, is that it is time-compressing, and hence in some
cases it may result in a simulation that is faster than the original execution.

While the SST gives near-optimal message lower bounds up to large values of the number of allowed
synchronous rounds r (usually polynomial in the size of the network), it fails to provide meaningful
bounds when a very large number of rounds is allowed. To complement the bounds provided by the
SST, we then derive message lower bounds for the synchronous message-passing model that are uncon-
ditional, that is, independent of r, via direct reductions from multi-party communication complexity.

We apply our approach to show (almost) tight message-time tradeoffs and message lower bounds for
several fundamental problems in the synchronous message-passing model of distributed computation.
These include sorting, matrix multiplication, and many graph problems. All these lower bounds hold for
any distributed algorithms, including randomized Monte Carlo algorithms.

Key words: distributed algorithms; synchronous message-passing; communication complexity; lower bounds;
synchronizers

∗Department of Computer Science, University of Houston, Houston, TX 77204, USA.
E-mail: gopalpandurangan@gmail.com, michele@cs.uh.edu. Supported, in part, by NSF grants CCF-1527867 and
CCF-1540512.
†Department of Computer Science and Applied Mathematics, The Weizmann Institute of Science, Rehovot, 76100 Israel.

E-mail: david.peleg@weizmann.ac.il.



1 Introduction

Message complexity, which refers to the total number of messages exchanged during the execution of a
distributed algorithm, is one of the two fundamental complexity measures used to evaluate the performance
of algorithms in distributed computing [34]. Even when time complexity is the primary consideration,
message complexity is significant. In fact, in practice the performance of the underlying communication
subsystem is influenced by the load on the message queues at the various sites, especially when many
distributed algorithms run simultaneously. Consequently, as discussed e.g. in [17], optimizing the message
(as well as the time) complexity in some models for distributed computing has direct consequences on the
time complexity in other models. Moreover, message complexity has also a considerable impact on the
auxiliary resources used by an algorithm, such as energy. This is especially crucial in contexts, such as
wireless sensor networks, where processors are powered by batteries with limited capacity. Besides, from
a physical standpoint, it can be argued that energy leads to more stringent constraints than time does since,
according to a popular quote by Peter M. Kogge, “You can hide the latency, but you can’t hide the energy.”

Investigating the message complexity of distributed computations is therefore a fundamental task. In
particular, proving lower bounds on the message complexity for various problems has been a major focus in
the theory of distributed computing for decades (see, e.g., [30, 38, 34, 40]). Tight message lower bounds for
several fundamental problems such as leader election [25, 26], broadcast [4, 25], spanning tree [22, 30, 40,
25], minimum spanning tree [23, 40, 30, 25, 17], and graph connectivity [17], have been derived in various
models for distributed computing.

One of the most important distinctions among message passing systems is whether the mode of commu-
nication is synchronous or asynchronous. In this paper we focus on proving lower bounds on the message
complexity of distributed algorithms in the synchronous communication setting. Many of the message lower
bounds mentioned above (e.g., [22, 23, 4, 25, 17]) use ad hoc (typically combinatorial) arguments, which
typically apply only to the problem at hand. In this paper, on the other hand, the approach is to use commu-
nication complexity [24] as a uniform tool to derive message lower bounds for a variety of problems in the
synchronous setting.

Communication complexity, originally introduced by Yao [44], is a subfield of complexity theory with
numerous applications in several, and very different, branches of computer science (see, e.g., [24] for a
comprehensive treatment). In the basic two-party model, there are two distinct parties, usually referred
to as Alice and Bob, each of whom holds an n-bit input, say x and y. Neither knows the other’s input,
and they wish to collaboratively compute a function f(x, y) by following an agreed-upon protocol. The
cost of this protocol is the number of bits communicated by the two players for the worst-case choice of
inputs x and y. It is important to notice that this simple model is inherently asynchronous, since it does not
provide the two parties with a common clock. Synchronicity, however, makes the model subtly different,
in a way highlighted by the following simple example (see, e.g., in [39]). If endowed with a common
clock, the two parties could agree upon a protocol in which time-coding is used to convey information: for
instance, an n-bit message can be sent from one party to the other party by encoding it with a single bit
sent in one of 2n possible synchronous rounds. Hence, in a synchronous setting, any problem can be solved
(deterministically) with communication complexity of one bit. This is a big difference compared to the
classical (asynchronous) model! Likewise, as observed in [17], k bits of communication suffice to solve any
problem in a complete network of k parties that initially agree upon a leader (e.g., the node with smallest
ID) to whom they each send the bit that encodes their input. However, the low message complexity comes
at the price of a high number of synchronous rounds, which has to be at least exponential in the size of
the input that has to be encoded, as a single bit within time t can encode at most log t bits of information.
The above observation raises many intriguing questions: (1) If one allows only a small number of rounds
(e.g., polynomial in n) can such a low message complexity be achieved? (2) More generally, how can one
show message lower bounds in the synchronous distributed computing model vis-a-vis the time (round)

1



complexity? This paper tries to answer these questions in a general and comprehensive way.
As discusses before, in the synchronous setting, for message lower bounds it does not suffice to appeal

directly to lower bounds from communication complexity theory. This is unlike the situation when we
are interested in showing time lower bounds. In particular, the Simulation Theorem of [8] (see also [31]),
which is useful to show time lower bounds, does not apply if we want to show message lower bounds in a
synchronous setting. Informally speaking, the reason is that “silence” (i.e., when in some round no party
sends any message) does not really help to save time: it wastes rounds anyway.

Our approach is based on the design of a new and efficient synchronizer that can efficiently simulate
synchronous algorithms that use (a lot of) silence, unlike previous synchronizers. Recall that a synchronizer
ν transforms an algorithm S designed for a synchronous system into an algorithm A = ν(S) that can
be executed on an asynchronous system. The goal is to keep TA and CA, the time and communication
complexities of the resulting asynchronous algorithmA, respectively, close to TS andCS , the corresponding
complexities of the original synchronous algorithm S. The synchronizers appearing in the literature follow
a methodology (described e.g. in [34]) which resulted in bounding the complexities TA and CA of the
asynchronous algorithm A for every problem instance I as

TA(I) ≤ Tinit(ν) + ΨT (ν) · TS(I),

CA(I) ≤ Cinit(ν) + CS(I) + ΨC(ν) · TS(I),

where ΨT (ν) (resp., ΨC(ν)) is the time (resp., communication) overhead coefficient of the synchronizer ν,
and Tinit(ν) (resp., Cinit(ν)) is the time (resp., communication) initialization cost. In particular, the early
synchronizers, historically named α [3], β [3], γ [3], and δ [36] (see also [34]), handled each synchronous
round separately, and incurred a communication overhead of at leastO(k) bits per synchronous round, where
k is the number of processors in the system. The synchronizer µ of [5] remedies this limitation by taking
a more global approach, and its time and communication overheads ΨT (µ) and ΨC(µ) are both O(log3 k),
which is at most a polylogarithmic factor away from optimal under the described methodology.

Note, however, that the dependency of the asynchronous communication complexity CA(I) on the syn-
chronous time complexity TS(I) might be problematic in situations where the synchronous algorithm takes
advantage of synchronicity in order to exploit silence, and uses time-coding for conveying information while
transmitting fewer messages (e.g., see [17, 18]). Such an algorithm, typically having low communication
complexity but high time complexity, translates into an asynchronous algorithm with high time and com-
munication complexities. Hence, we may prefer a simulation methodology that results in a communication
dependency of the form

CA(I) ≤ Cinit(ν) + ΨC(ν) · CS(I),

and where ΨC(ν) is at most polylogarithmic in the number of rounds TS of the synchronous algorithm.

1.1 Our Contributions

We present a uniform approach to derive message lower bounds for synchronous distributed computations by
leveraging results from the theory of communication complexity. In this sense, this can be seen a companion
paper of [8], which leverages the connection between communication complexity and distributed computing
to prove lower bounds on the time complexity of synchronous distributed computations.

A New and Efficient Synchronizer. Our approach, developed in Section 3, is based on the design of
a new and efficient synchronizer for complete networks, which we call synchronizer σ,1 and which is of

1We use σ as it is the first letter in the Greek word σιωπή which means “silence”.

2



independent interest. The new attractive feature of synchronizer σ, compared to existing ones, is that it is
time-compressing. To define this property, let us denote by T cS the number of communicative (or active)
synchronous rounds, in which at least one node of the network sends a message. Analogously, let T qS denote
the number of quiet (or inactive) synchronous rounds, in which all processors are silent. Clearly, TS = T cS+
T qS . Synchronizer σ compresses the execution time of the simulation by essentially discarding the inactive
rounds, and remaining only with the active ones. This is in sharp contrast to all previous synchronizers,
whereby every single round of the synchronous execution is simulated in the asynchronous network. A
somewhat surprising consequence of this feature is that synchronizer σ may in certain situations result in a
simulation algorithm whose execution time is faster than the original synchronous algorithm. Specifically,
TA can be strictly smaller than TS when the number of synchronous rounds in which no node communicates
is sufficiently high. (In fact, we observe that time compression may occur even when simulating the original
synchronous algorithm on another synchronous network, in which case the resulting simulation algorithm
may yield faster, albeit more communication-intensive, synchronous executions.)

Table 1 compares the complexities of various synchronizers when used for complete networks.

Synchronizer Time Complexity TA Message Complexity CA
α [3] O(TS) O(k2) +O(CS) +O(TS k

2)
β [3] O(k) +O(TS) O(k log k) +O(CS) +O(TS k)
µ [5] O(k log k) +O(TS log3 k) O(k log k) +O(CS) +O(TS log3 k)

σ [this paper] O(k) +O(T cS logk TS) O(k log k) +O(CS logk TS)

Table 1: Comparison among different synchronizers for k-node complete networks. The message size is
assumed to beO(log k) bits, and CA is expressed in number of messages. (Note that on a complete network,
synchronizers γ [3] and δ [36] are out-performed by β, hence their complexities are omitted from this table.)

Synchronous Simulation Theorem. As a by-product of synchronizer σ, we show a general theorem,
the Synchronous Simulation Theorem (SST), which shows how message lower bounds for synchronous
distributed computations can be derived by leveraging communication complexity results obtained in the
asynchronous model. More precisely, the SST provides a tradeoff between the message complexity of the
synchronous computation and the maximum number of synchronous rounds TS allowed to the computation.
This tradeoff reveals that message lower bounds in the synchronous model are at most logarithmic factors
(in TS and k, where TS is the number of rounds taken in the synchronous model, and k is the network size)
worse compared to the corresponding lower bounds in the asynchronous model.

Applications: Message-Time Tradeoffs. In Section 4 we apply the SST to obtain message-time tradeoffs
for several fundamental problems. These lower bounds assume that the underlying communication network
is complete, which is the case in many computational models [29, 2, 20]; however, the same lower bounds
clearly apply also when the network topology is arbitrary. The corresponding bounds on communication
complexity are tight up to polylogarithmic factors (in the input size n of the problem and network size
k) when the number of rounds is at most polynomial in the input size. This is because a naive algorithm
that sends all the bits to a leader via the time encoding approach of [18, Theorem 3.1] is optimal up to
polylogarithmic factors. We next summarize our lower bound results for various problems for a precise
statement of these results. All the lower bounds in this paper hold even for randomized protocols that can
return the wrong answer with a small constant probability.

Our lower bounds assume that the underlying topology is complete and the input is partitioned (in an
adversarial way) among the k nodes.2 We assume that at most TS rounds of synchronous computation

2For graph problems, the network topology and the input graph are unrelated.

3



are allowed. (We will interchangeably denote the number of rounds with TS and r.) For sorting, where
each of the k nodes have n ≥ 1 input numbers, we show a message lower bound3 of Ω̃(nk/ log r). This
result immediately implies that Lenzen’sO(1)-round sorting algorithm for the Congested Clique model [27]
has also optimal (to within log factors) message complexity. For the Boolean matrix multiplication of two
Boolean n×nmatrices we show a lower bound of Ω(n2/ log rk). For graph problems, there is an important
distinction that influences the lower bounds: whether the input graph is initially partitioned across the nodes
in an edge-partitioning fashion or in vertex-partitioning fashion. In the former, the edges of the graph are
arbitrarily distributed across the k parties, while in the latter each vertex of the graph is initially held by one
party, together with the set of its incident edges. In the edge-partitioning setting, using the results of [43]
in conjunction with the SST yields non-trivial lower bounds for many graph problems (graph connectivity,
testing cycle freeness, testing bipartiteness): Ω̃(kn/ log rk) (allowing edge duplication, n is the number of
vertices of the input graph). For testing triangle-freeness and diameter the respective bounds are Ω̃(km)
and Ω̃(m). (In the vertex-partitioning setting, on the other hand, many graph problems such as graph
connectivity can be solved with O(n polylog n) message complexity [43].)

Unconditional Lower Bounds. While the SST gives essentially tight lower bounds up to very large values
of rounds TS (e.g., polynomial in n), they become trivial for larger values of TS (in particular, when TS
is exponential in n). To complement the bounds provided by the SST, in Section 5 we derive message
lower bounds in the synchronous message-passing model which are unconditional, that is, independent of
time. These lower bounds are established via direct reductions from multi-party communication complexity.
They are of the form Ω̃(k), and this is almost tight since every problem can be solved with O(k) bits
of communication by letting each party encode its input in just one bit via time encoding. We point out
that the unconditional lower bounds cannot be shown by reductions from 2-party case, as typically done
for many reductions for these problems. A case in point are the reductions to establish the lower bounds
for connectivity and diameter in the vertex-partitioning model. To show unconditional lower bounds for
connectivity and diameter we define a new multi-party problem called input-distributed disjointness (ID-
DISJ) (see Section 5) and establish a lower bound for it. We note that, unlike in the asynchronous setting,
reduction from a 2-party setting will not yield the desired lower bound of Ω(k) in the synchronous setting
(since 2-party problems can be solved trivially, exploiting clocks, using only one bit, as observed earlier).

1.2 Further Related Work

The first paper that showed how to leverage lower bounds on communication complexity in a synchronous
distributed setting is [35], which proves a near-tight lower bound on the time complexity of distributed mini-
mum spanning tree construction in the CONGEST model [34]. Elkin [12] extended this result to approxima-
tion algorithms. The same technique was then used to prove a tight lower bound for minimum spanning tree
verification [21]. Later, Das Sarma et al. [8] explored the connection between the theory of communication
complexity and distributed computing further by presenting time lower bounds for a long list of problems,
including inapproximability results. For further work on time lower bounds via communication complexity
see, e.g., [31, 15, 11, 20, 33], as well as [32] and references therein.

Researchers also investigated how to leverage results in communication complexity to establish lower
bounds on the message complexity of distributed computations. Tiwari [41] shows communication complex-
ity lower bounds for deterministic computations over networks with some specific topologies. Woodruff and
Zhang [43] study the message complexity of several graph and statistical problems in complete networks
(see also the recent work of [7] for the case of arbitrary topology networks). Their lower bounds are derived
through a common approach that reduces those problem from a new meta-problem whose communication

3Throughout this paper, the notation Ω̃ hides polylogarithmic factors in k and n, i.e., Ω̃(f(n, k)) denotes
Ω(f(n, k)/(polylognpolylog k)).

4



complexity is established. However, the models considered in these two papers are inherently asynchronous,
hence their lower bounds do not hold if a common clock is additionally assumed.

Hegeman et al. [17] study the message complexity of connectivity and MST in the (synchronous) con-
gested clique. However, their lower bounds are derived using ad hoc arguments. To the best of our knowl-
edge, the first connection between the classical communication complexity theory and the message complex-
ity in a synchronous setting has been established by Impagliazzo and Williams [18]. They show almost tight
bounds for the case with two parties for deterministic algorithms, by efficiently simulating a synchronous
protocol in an asynchronous model (like we do). Ellen et al. [13] claim a simulation result for k ≥ 2 parties.
Their results, as stated in their paper [13] without proofs, are similar to our SST Theorem. However, their
simulation does not consider time, whereas ours is time-efficient as well.

Interactive communication in a model where parties are allowed to remain silent was introduced by [9],
which considers the communication complexity of computing symmetric functions in the multiparty setting.
[14, 28, 25] are examples where synchronized clocks are effectively exploited to reduce communication in
distributed algorithms.

2 Preliminaries: Models, Assumptions, and Notation

The message-passing model is one of the fundamental models in the theory of distributed computing, and
many variations of it have been studied. We are given a complete network of k nodes, which can be viewed
as a complete undirected simple graph where nodes correspond to the processors of the network and edges
represent bidirectional communication channels. Each node initially holds some portion of the input instance
I , and this portion is known only to itself and not to the other nodes. Each node can communicate directly
with any other node by exchanging messages. Nodes wake up spontaneously at arbitrary times. The goal is
to jointly solve some given problem Π on input instance I .

Nodes have a unique identifier of O(log k) bits. Before the computation starts, each node knows its own
identifier but not the identifiers of any other node. Each link incident to a node has a unique representation in
that node. All messages received at a node are stamped with the identification of the link through which they
arrived. By the number of its incident edges, every node knows the value of k before the computation starts.
All the local computation performed by the processors of the network happens instantaneously, and each
processor has an unbounded amount of local memory. It is also assumed that both the computing entities
and the communication links are fault-free.

A key distinction among message-passing systems is whether the mode of communication is syn-
chronous or asynchronous. In the synchronous mode of communication, a global clock is connected to
all the nodes of the network. The time interval between two consecutive pulses of the clock is called a
round. The computation proceeds in rounds, as follows. At the beginning of each synchronous round, each
node sends (possibly different) messages to its neighbors. Each node then receives all the messages sent to
it in that round, and performs some local computation, which will determine what messages to send in the
next round. In the asynchronous mode of communication, there is no global clock. Messages over a link
incur finite but arbitrary delays (see, e.g., [16]). This can be modeled as each node of the network having
a queue where to place outgoing messages, with an adversarial global scheduler responsible of dequeuing
messages, which are then instantly delivered to their respective recipients. Communication complexity, the
subfield of complexity theory introduced by Yao [44], studies the asynchronous message-passing model.

We now formally define the complexity measure studied in this paper. Most of these definitions can
be found in [24]. The communication complexity of a computation is the total number of bits exchanged
across all the links of the network during the computation (or, equivalently, the total number of bits sent
by all parties). The communication complexity of a distributed algorithm A is the maximum number of
bits exchanged during the execution of A over all possible inputs of a particular size. The communication
complexity of a problem Π is the minimum communication complexity of any algorithm that solves Π.

5



Message complexity refers to the total number of messages exchanged, where the message size is bounded
by some value B of bits.

In this paper we are interested in lower bounds for Monte Carlo distributed algorithms. A Monte Carlo
algorithm is a randomized algorithm whose output may be incorrect with some probability. Formally, algo-
rithm A solves a problem Π with ε-error if, for every input I , A outputs Π(I) with probability at least 1− ε,
where the probability is taken only over the random strings of the players. The communication complexity
of an ε-error randomized protocol/algorithm A on input I is the maximum number of bits exchanged for
any choice of the random strings of the parties. The communication complexity of an ε-error randomized
protocol/algorithm A is the maximum, over all possible inputs I , of the communication complexity of A
of input I . The randomized ε-error communication complexity of a problem Π is the minimum communi-
cation complexity of any ε-error randomized protocol that solves Π. In a model with k ≥ 2 parties, this is
denoted with Rk,ε(Π). The same quantity can be defined likewise for a synchronous model, in which case
it is denoted with SRk,ε(Π). Throughout the paper we assume ε to be a small constant and therefore, for
notational convenience, we will drop the ε in the notation defined heretofore.

We say that a randomized distributed algorithm uses a public coin if all parties have access to a common
random string. In this paper we are interested in lower bounds for public-coin randomized distributed
algorithms. Clearly, lower bounds of this kind also hold for private-coin algorithms, in which parties do not
share a common random string.

We now define a second complexity measure for a distributed computation, the time complexity. In the
synchronous mode of communication, it is defined as the (worst-case) number of synchronous rounds that
it comprises. It is additionally referred to as round complexity. Following [8], we define the randomized
ε-error r-round randomized communication complexity of a problem Π in a synchronous model to be the
minimum communication complexity of any protocol that solves Π with error probability ε when it runs
in at most r rounds. We denote this quantity with SRk,ε,r(Π). A lower bound on SRk,ε,r(Π) holds also
for Las Vegas randomized algorithms as well as for deterministic algorithms. In the asynchronous case, the
time complexity of a computation is the (worst-case) number of time units that it comprises, assuming that
each message incurs a delay of at most one time unit [34, Definition 2.2.2]. Thus, in arguing about time
complexity, a message is allowed to traverse an edge in any fraction of the time unit. This assumption is used
only for the purpose of time complexity analysis, and does not imply that there is a bound on the message
transmission delay in asynchronous networks.

Clearly, a lower bound on the message complexity is given by a lower bound on the communication
complexity, divided by the size of the message imposed by the model.

Throughout this paper, we shall use interchangeably node, party, or processor to refer to elements of the
network, while we will use vertex to refer to a node of the input graph when the problem Π is specified on a
graph.

3 Efficient Network Synchronization and the Synchronous Simulation The-
orem

3.1 The Simulation

We present synchronizer σ, an efficient (deterministic) simulation of a synchronous algorithm S designed for
a complete network of k nodes in the corresponding asynchronous counterpart. The main ideas underlying
the simulation are the exploitation of inactive nodes and inactive rounds, via the use of the concept of
tentative time, in conjunction with the use of acknowledgments as a method to avoid congestion and thus
reduce the time overhead in networks whose links have limited bandwidth. It is required that all the possible
communication sequences between any two nodes of the network are self-determining, i.e., no one is a prefix
of another.

6



One of the k nodes is designated to be a coordinator, denoted with C, which organizes and synchronizes
the operations of all the processors. The coordinator is determined before the actual simulation begins, and
this can be done by executing a leader election algorithm for asynchronous complete networks, such as the
one in [1]. (The coordinator should not be confused with the notion of coordinator in the variant of the
message-passing model introduced in [10]. In the latter, (1) the coordinator is an additional party, which has
no input at the beginning of the computation, and which must hold the result of the computation at the end of
the computation, and (2) nodes of the network are not allowed to communicate directly among themselves,
and therefore they can communicate only with the coordinator.) After its election, the coordinator sends to
each node a message START(1) instructing them to start the simulation of round 1.

At any given time each node v maintains a tentative time estimate TT(v), representing the next syn-
chronous round on which v plans to send a message to one (or more) of its neighbors. This estimate may
change at a later point, i.e., v may send out messages earlier than time TT(v), for example in case v receives
a message from one of its neighbors, prompting it to act. However, assuming no such event happens, v will
send its next message on round TT(v). (In case v currently has no plans to send any messages in the future,
it sets its estimate to TT(v) =∞.) The coordinator C maintains k local variables, which store, at any given
time, the tentative times of all the nodes of the network.

We now describe the execution of phase t of the simulation, which simulates the actions of the processors
in round t of the execution ξS of algorithm S in the synchronous network. Its starting point is when the
coordinator realizes that the current phase, simulating some round t′ < t, is completed, in the sense that all
messages that were supposed to be sent and received by processors on round t′ of ξS were sent and received
in the simulation on the asynchronous network. The phase proceeds as follows.

(1) The coordinator C determines the minimum value of TT(v) over all processors v, and sets t to that
value. (In the first phase, the coordinator sets t = 1 directly.) If t = ∞ then the simulation is completed
and it is possible to halt. If t′ + 1 < t, then the synchronous rounds t′ + 1, . . . , t − 1 are inactive rounds,
that is, in which all processors are silent. Thus, the system conceptually skips all rounds t′ + 1, . . . , t − 1,
and goes straight to simulating round t. Since only the coordinator can detect the halting condition, it is also
responsible for informing the remaining k − 1 nodes by sending, in one time unit, k − 1 additional HALT
messages to each of them.

(2) The coordinator (locally) determines the set of active nodes, defined as the set of nodes whose
tentative time is t, that is,

A(t) = {v | TT(v) = t},

and sends to each of them a message START(t) instructing them to start round t. (In the first phase, all
nodes are viewed as active, i.e., A(1) = V ).

(3) Upon the receipt of this message, each active node v sends all the messages it is required by the
synchronous algorithm to send on round t, to the appropriate subsetN (v, t) of its neighbors. This subset of
neighbors is hereafter referred to as v’s clan on round t, and we refer to v itself as the clan leader. We stress
that these messages are sent directly to their destination; they must not be routed from v to its clan via the
coordinator, as this might cause congestion on the links from the coordinator to the members of N (v, t).

(4) Each neighbor w ∈ N (v, t) receiving such a message immediately sends back an acknowledgement
directly to v.

Note that receiving a message from v may cause w to want to change its tentative time TT(w). However,
w must wait for now with determining the new value of TT(w), for the following reason. Note that w may
belong to more than one clan. Let Aw(t) ⊆ A(t) denote the set of active nodes which are required to send
a message to w on round t (namely, the clan leaders to whose clans w belongs). At this time, w does not
know the set Aw(t), and therefore it cannot be certain that no additional messages have been sent to it from
other neighbors on round t. Such messages might cause additional changes in TT(w).

(5) Once an active node v has received acknowledgments from each of its clan members w ∈ N (v, t),
v sends a message SAFE(v, t) to the coordinator C.

7



(6) Once the coordinator C has received messages SAFE(v, t) from all the active nodes inA(t), it knows
that all the original messages of round t have reached their destinations. What remains is to require all the
nodes that were involved in the above activities (namely, all clan members and leaders) to recalculate their
tentative time estimate. Subsequently, the coordinator C sends out a message ReCalcT to all the active
nodes of A(t) (which are the only ones C knows about directly), and each v ∈ A(t) forwards this message
to its entire clan, namely, its N (v, t) neighbors, as well.

(7) Every clan leader or member x ∈ A(t) ∪
⋃
v∈A(t)N (v, t) now recalculates its new tentative time

estimate TT(x), and sends it directly to the coordinator C. (These messages must not be forwarded from
the clan members to the coordinator via their clan leaders, as this might cause congestion on the links from
the clan leaders to the coordinator.) The coordinator immediately replies each such message by sending an
acknowledgement directly back to x.

(8) Once a (non-active) clan member w has received such an acknowledgement, it sends all its clan
leaders in Aw(t) a message DoneReCalcT. (Note that at this stage, w already knows the set Aw(t) of its
clan leaders—it is precisely the set of nodes from which it received messages in step (3).)

(9) Once an active node v has received an acknowledgement from C as well as messages DoneReCalcT
from every member w ∈ N (v, t) of its clan, it sends the coordinator C a message DoneReCalcT, repre-
senting itself along with all its clan.

(10) Once the coordinator C has received an acknowledgement from every active node, it knows that the
simulation of round t is completed.

3.2 Analysis of Complexity

Theorem 1. Synchronizer σ is a synchronizer for complete networks such that

TA = O

(
k log k +

(
1 +

log TS
B

)
T cS

)
, (1)

CA = O
(
k log2 k + CS log TS

)
, (2)

where T cS is the number of synchronous rounds in which at least one node of the network sends a message,
k is the number of nodes of the network, and B is the message size of the network, in which at most one
message can cross each edge at each time unit.

Proof. For any bit sent in the synchronous execution ξS , the simulation uses dlog2 TSe additional bits to
encode the values of the tentative times, and a constant number of bits for the acknowledgments and for
the special messages START(t), SAFE(v, t), ReCalcT, and DoneReCalcT. Observe, finally, that no
congestion is created by the simulation, meaning that in each synchronous round being simulated each node
sends and receives at most O(1 + dlog2 TSe) bits in addition to any bit sent and received in the synchronous
execution ξS .

The O(k log k) and O(k log2 k) additive factors in the first and second equation are, respectively, the
time and message complexity of the asynchronous leader election algorithm in [1] run in the initialization
phase. This algorithm exchanges a total of O(k log k) messages of size O(log k) bits each, and takes O(k)
time.

3.3 Message Lower Bound for Synchronous Distributed Computations

Theorem 2 (Synchronous Simulation Theorem (SST)). Let SCCDk,r(Π) be the r-round communication
complexity of problem Π in the synchronous message-passing complete network model with k nodes, where
D is the initial distribution of the input bits among the nodes. Let CCD

′
k′ (Π) be the communication complex-

ity of problem Π in the asynchronous message-passing complete network model with k′ ≤ k nodes where,

8



given some partition of the nodes of a complete network of size k into sets S1, S2, . . . , Sk′ , D′ is the initial
distribution of the input bits whereby, for each i ∈ {1, 2, . . . , k′}, node i holds all the input bits held by
nodes in Si under the distribution D. Then,

SCCDk,r(Π) = Ω

(
CCD

′
k′ (Π)− k log2 k

1 + log r + d(k − k′)/ke log k

)
.

Proof. We leverage the communication complexity bound of the σ synchronizer result to prove a lower
bound on SCCDk,r(Π), synchronous communication complexity, by relating it to CCD

′
k′ (Π), the communi-

cation complexity in the asynchronous setting. More precisely, we can use the σ synchronizer to simulate
any synchronous algorithm for the problem Π to obtain an asynchronous algorithm for Π whose message
complexity satisfies Equation (2) of Theorem 1. We first consider the case when k′ = k. Rearranging Equa-
tion (2), and by substituting TS with r, CA with CCDk (Π), and CS with SCCDk (Π), and by setting B = 1
(since (S)CC is expressed in number of bits), we obtain the claimed lower bound on SCCDk,r(Π).

Next we consider k′ < k. In this case, we need to do a minor modification to the σ synchronizer. Since
we assume that messages do not contain the ID of the receiver and of the sender, when the network carrying
the simulation has fewer nodes than the network to be simulated the ID of both source and the destination of
any message has to be appended to the latter. This is the sole alteration needed for the simulation to handle
this case. This entails d(k − k′)/ke · 2dlog ke additional bits to be added to each message. In this case, the
communication complexity of the σ synchronizer is increased by a factor of O(d(k − k′)/ke log k). This
gives the claimed result.

Clearly, a corresponding lower bound on the total number of messages follows by dividing the commu-
nication complexity by the message size B. Observe that CC and SCC can be either both deterministic or
both randomized. In the latter case, such quantities can be plugged in Theorem 2 according to the definition
of ε-error r-round protocols given in Section 2.

4 Message-Time Tradeoffs for Synchronous Distributed Computations

We now apply the Synchronous Simulation Theorem to get lower bounds on the communication complexity
of some fundamental problems in the synchronous message-passing model.

4.1 Sorting

In this section we give a lower bound to the communication complexity of comparison-based sorting algo-
rithms. At the beginning each of the k parties holds n elements of O(log n) bits each. At the end, the i-th
party must hold the (i− 1)k + 1, (i− 1)k + 2, . . . , i · k-th order statistics. We have the following result.

Theorem 3. The randomized r-round ε-error communication complexity of sorting in the synchronous
message-passing model with k parties is Ω(nk/ log k log r).

Proof. We use a simple reduction from k-party set disjointness. Given an instance of k-party DISJ(n),
{Xi = xi,1, xi,2, . . . , xi,n s.t. i ∈ [k]}, for any of such nk bits xi,j , let {(j, xi,j) s.t. i ∈ [k], j ∈ [n]} be the
set of nk inputs for the sorting problem. Once ordered these nk pairs w.r.t. the first of the two elements, then
X1, X2, . . . , Xk are disjoint if and only if there exists one party i ∈ [k] whose n output pairs are all (i, 1).
Then, with k−1 additional bits of communication all the k parties get to know the output to the k-party DISJ
problem. The k-party communication complexity of DISJ(n) in the coordinator model is Ω(nk) bits [6],
and this implies a lower bound of Ω(nk/ log k) in the classical message passing-model where every node
can directly communicate with every other node. The theorem follows by applying Theorem 2.

9



4.2 Matrix Multiplication

We now show a synchronous message lower bound for Boolean matrix multiplication, that is, the problem
of multiplying two n× n matrices over the semiring ({0, 1},∧,∨).

In [42, Theorem 4] it is shown the following: Suppose Alice holds a Booleanm×nmatrixA, Bob holds
a Boolean n ×m matrix B, and the Boolean product of these matrices has at most z nonzeroes. Then the
randomized communication complexity of matrix multiplication is Ω̃(

√
z ·n). To apply Theorem 2 we then

just have to consider an initial partition of the 2mn input elements among k parties such that there exists a
cut in the network that divides the elements of A from those of B. Given such a partition, we immediately
obtain the following.

Theorem 4. The randomized r-round ε-error communication complexity of Boolean matrix multiplication
in the synchronous message-passing model with k parties is Ω(

√
z · n/ log rk).

4.3 Statistical and Graph Problems

The generality of the SSTs allows us to directly apply any previous result derived for the asynchronous
message-passing model. As an example, of particular interest are the results of Woodruff and Zhang [43],
who present lower bounds on the communication complexity of a number of fundamental statistical and
graph problems in the (asynchronous) message-passing model with k parties, all connected to each other.
We shall seamlessly apply the SST for complete networks to all of their results, obtaining the following.

Theorem 5. The randomized r-round ε-error communication complexity of graph connectivity, testing cy-
cle freeness, testing bipartiteness, testing triangle-freeness, and diameter of graphs with n nodes in the
synchronous message-passing model with k parties, where the input graph is encoded in edges (u, v) which
are initially (adversarially) distributed among the parties, is Ω̃(nk/ log rk).

We remark that the aforementioned result holds in the edge-partitioning model, that is, when the input
graph is encoded in edges (u, v) which are initially (adversarially) distributed among the parties. (Notice
that this result does not contradict the recent result of [19], which assumes vertex-partitioning.)

Diameter in the Vertex-Partitioning Model. Given an n-vertex graph distributed among the k parties
w.r.t. its vertices (i.e., each party gets a subset of nodes and their incident edges), the goal is to compute its
diameter. Frischknecht et al. [15] show a reduction for this problem from the 2-party disjointness problem
of size Θ(n2) bits. This implies that the communication complexity of this problem is Ω(n2) bits in the
asynchronous setting. Our SST immediately gives the following result.

Theorem 6. The randomized r-round ε-error communication complexity of computing the diameter of
an n-vertex graph in the synchronous message-passing model with k parties, with vertex-partitioning, is
Ω(n2/ log kr).

We note, on the other hand, that using time encoding the diameter problem can be solved using O(k)
bits. However, the SST message-time tradeoff does not give a matching (or almost matching) lower bound.
Using a direct reduction from the multiparty communication complexity, we will show an unconditional
lower bound of Ω(k/ log k) in Section 5.

5 Unconditional Message Lower Bounds for Synchronous Distributed Com-
putations

The bounds resulting from the application of the synchronous simulation theorem of Section 3 become
vanishing as r increases, independently of the problem Π at hand. Hence it is natural to ask whether there

10



are problems that can be solved by exchanging, e.g., only a constant number of bits when a very large
number of rounds is allowed. In this section we discuss problems for which this cannot happen.

Specifically, we will show that Ω̃(k) bits is an unconditional lower bound for several important problems
in a synchronous complete network of k nodes. The key idea to prove unconditional Ω̃(k) bounds via
communication complexity is to resort to multiparty communication complexity (rather than just to classical
2-party communication complexity), where by a simple and direct information-theoretic argument (i.e.,
without reducing from the asynchronous setting, as in Section 3) we can show that many problems in such
a setting satisfy an Ω(k)-bit lower bound, no matter how many synchronous rounds are allowed.

5.1 Selection

In the selection problem the input is a set of n numbers of O(log n) bits each, and at the beginning each
party has one of such numbers (we assume k = n for illustration; this can be generalized to arbitrary k < n).
At the end of the protocol, the i-th party, for some i ∈ [n], must hold the i-th order statistics of the set of
input numbers. The following result follows by a simple application of Yao’s lemma.

Theorem 7. The randomized ε-error message complexity (in messages of O(log n) bits) of selection in the
synchronous message-passing model is Ω(n).

Proof. It is easy to show, by a standard fooling set argument, that any deterministic algorithm has to com-
municate at least n − 1 > n/10 numbers. Consider the input distribution µ that assigns to the n parties a
random permutation of the set [n]. If a deterministic algorithm communicates less than n/10 numbers, then
the are at least 9n/10 parties that do not communicate their own number. Hence, when the input follows the
distribution µ the probability that a deterministic algorithm errs if it communicates less than n/10 numbers
is at least 9/10. This means that the distributional complexity of any deterministic algorithm on distribution
µ is at least n/10. Hence, by Yao’s lemma the same lower bound applies to the expected cost of randomized
algorithms as well.

The same Ω(n) lower bound clearly holds also for the version of the problem where there are n2 numbers
(but still only n parties), as in the preceding section. We note that the above lower bound implies the same
bound for sorting as well (even for sorting n numbers in total).

5.2 Graph Problems in the Edge-Partitioning Model

In Section 4.3 we argued that the bounds that can be derived for graph problems in the edge-partitioning
model by the application of the SST are all of the form Ω̃(kn/ log(rk)). For very large values of the
number of allowed rounds r those bounds become vanishing. It is therefore natural to ask whether this is a
limitation of the specific lower bound technique, or if there exists a solution for those problems which entails
a low (sublinear in n or k) message complexity when a super-exponential number of rounds is allowed. In
this section we answer this latter question in the negative, by showing an Ω(k) lower bound that holds
irrespective of the number of rounds r.

Toward this end we shall leverage the reductions from the OR disjointness (OR-DISJ) problem defined
in [43].

Theorem 8. The randomized ε-error communication complexity of OR-DISJ(k) in the synchronous message-
passing model is Ω(k).

Proof. We use the same argument used to prove the lower bound for selection. It is easy to show, by a
standard fooling set argument, that any deterministic algorithm has to communicate at least k − 1 > k/10
bits. Consider the input distribution µ that assigns to the k parties a random n-bit vector. If a deterministic
algorithm communicates less than k/10 bits, then the are at least 9k/10 parties that do not communicate

11



anything. Hence, when the input follows the distribution µ the probability that a deterministic algorithm errs
if it communicates less than k/10 bits is at least 9/10. This means that the distributional complexity of any
deterministic algorithm on distribution µ is at least k/10. Hence, by Yao’s lemma the same lower bound
applies to the expected cost of randomized algorithms as well.

We now can leverage this result along with the reductions in [43] to prove a (tight) Ω(k) lower bound
for several graph problems.

Theorem 9. The randomized ε-error communication complexity of graph connectivity, testing cycle free-
ness, testing bipartiteness, testing triangle-freeness, and diameter in the synchronous message-passing
model, with edge-partitioning, is Ω(k), where k is the number of parties.

5.3 Graph Problems in the Vertex-Partitioning Model

To show unconditional lower bounds for graph problems in the vertex-partitioning model, we use a reduction
from a new multiparty problem, called input-distributed disjointness (ID-DISJ) defined as follows. For the
rest of this section, we assume k = n and thus each party is assigned one vertex (and all its incident edges).

Definition 1. Given n parties, each holding one input bit, partitioned in two distinct subsets S1 = {1, 2, . . . , n/2}
and S2 = {n/2 + 1, n/2 + 2, . . . , n} of n/2 parties each, the input-distributed disjointness function ID-
DISJ(n) is 0 if there is some index i ∈ [n/2] such that both the input bits held by parties i and i + n/2 are
1, and 1 otherwise.

Notice that this problem is, roughly speaking, “in between” the classical 2-party set disjointness and the
n-party set disjointness: as in the latter, there are n distinct parties, and as in the former, the input can be
seen as two vectors of (n/2) bits. We now prove that the communication complexity of ID-DISJ(n) in the
synchronous message-passing model is Ω(n). We shall not use a reduction from the asynchronous setting,
such as in Section 3. Rather, in the synchronous setting, we argue that the expected cost of any deterministic
algorithm over an adversarially chosen distribution of inputs is Ω(n), and then apply Yao’s lemma. The key
fact that makes this argument lead to a tight Ω(n) lower bound for ID-DISJ(n) in the synchronous message-
passing model is that in such a problem each of n parties holds only one input bit: hence, if any two of these
bits are necessary to determine the output, then at least one bit has to be communicated, as the value of a
single bit cannot be compressed/encoded further even when clocks are allowed. Note that, while the lower
bound is obvious when considering deterministic algorithms, the randomized case needs a proof as shown
below.

Theorem 10. The randomized ε-error communication complexity of ID-DISJ(n) in the synchronous message-
passing model is Ω(n).

Proof. Given any initial partition of the n parties among S1 and S2, the values of the n bits in S1 and S2
(that is, the two n/2-bit vectors associated with S1 and S2) are fixed using the following input distribution µ
which was used by Razborov [37]. Let ` = n/4. With probability 1/4, the two sets have 1 bits in ` random
places chosen such that there is 1-bit in exactly one common index (i.e., exactly one i such that party i and
party i+ n/2 have bit 1); and with probability 3/4, the two sets have 1 bits in ` random places chosen such
that there is no common 1-bit (i.e., the two vectors are disjoint).

We use the same argument used to prove the lower bound for selection. It is easy to show, by a standard
fooling set argument, that any deterministic algorithm has to communicate at least n − 1 > n/10 bits. If a
deterministic algorithm communicates less than n/10 bits, then there are at least 9n/10 parties that do not
communicate anything. Since the output of the disjointness function depends on a single bit, when the input
follows the distribution µ the probability that a deterministic algorithm errs if it communicates less than
n/10 bits is at least a constant. This means that the distributional complexity of any deterministic algorithm

12



on distribution µ is at least Ω(n). Hence, by Yao’s lemma the same lower bound applies to the expected cost
of randomized algorithms as well.

5.3.1 Connectivity

We now leverage the preceding result to prove a (tight) Ω(n) lower bound for connectivity, and thus for all
the graph problems that can be reduced from it. This represents an alternative (and simpler, given the results
from communication complexity theory) proof than the one, established through an ad hoc argument, in [17]
for the Congested Clique model.

Theorem 11. The randomized ε-error communication complexity of graph connectivity in the synchronous
message-passing model, with vertex-partitioning, is Ω(n).

Proof. We shall reduce the connectivity problem from ID-DISJ, as follows. Given a generic instance of
ID-DISJ(n/2), denoted S1 = {s1, s2, . . . , sn/4} and S2 = {t1, t2, . . . , tn/4}, with party si holding bit xi
and party ti holding bit yi, we shall define the n-vertex graph G as shown in Figure 1, where each vertex
corresponds to a distinct party, parties s’s and t’s hold the bit associated with the instance of ID-DISJ(n/2).
There is an edge between sn/4 and tn/4, and for every i ∈ [n/4] there is and edge between ui and vi.
Additionally, for any i ∈ [n/4] there is an edge between si and ui (resp., between ti and vi) if and only if
xi = 0 (resp., yi = 0).

s1

s2

...

sn/4

u1

u2

...

un/4

v1

v2

...

vn/4

t1

t2

...

tn/4

x1 = 1

x2 = 0

xn/4 = 1

y1 = 1

y2 = 1

yn/4 = 0

Figure 1: The reduction used in the proof of Theorem 11. Dashed edges represent missing edges.

The key property of G is that it is connected if and only if the n/4-bit vectors x = x1, x2, . . . , xn/4 and
y = y1, y2, . . . , yn/4 of ID-DISJ(n/2) are disjoint, that is, if and only if ID-DISJ(n/2) = 0. The theorem
follows.

13



5.3.2 Diameter

Here we consider the problem of determining the diameter of a connected graph in the synchronous message-
passing model, where the vertices of the graph are initially partitioned across the parties. We show that deter-
mining a (5/4− ε)-factor approximation of the diameter, for some small constant ε > 0, incurs Ω(n/ log n)
communication.

Theorem 12. The randomized ε-error communication complexity of computing the diameter in the syn-
chronous message-passing model, with vertex-partitioning, is Ω(n/ log n).

Proof. We shall reduce the task of computing the diameter of a given graph from ID-DISJ, as follows. The
reduction is similar to the one in the preceding proof for graph connectivity. Given a generic instance of
ID-DISJ(n/2), denoted S1 = {s1, s2, . . . , sn/4} and S2 = {t1, t2, . . . , tn/4}, with party si holding bit xi
and party ti holding bit yi, we shall define a graph that is similar to the one in Figure 1, with the following
changes. Remove the edges connecting the si’s nodes with each other and the ti’s nodes with each other.
Let ` = c log(n/4), for some positive constant c. Add a complete binary tree with the si’s as the leaf nodes;
note that this binary tree has height (at most) ` (This way any node si is always reachable from any node sj ,
j 6= i, through a path of length at most 2`.) Do the same on the t side of the graph. If xi = 0 then add an
edge connecting si to ui; similarly if yi = 0 on the t side. Conversely, if xi = 1 then add a path of length
5` that connects si to ui; similarly if yi = 1 on the t side. The resulting graph is depicted in Figure 2. This
graph has Ω(n) and O(n log n) vertices.

s1

s2

...

sn/4

u1

u2

...

un/4

v1

v2

...

vn/4

t1

t2

...

tn/4

... ...

. . .

x1 = 1

. . .

y2 = 1

y1 = 0

x2 = 0

xn/4 = 0 yn/4 = 0

. .
.

..
.

..
.

. .
.

Figure 2: The reduction used in the proof of Theorem 12.

The key property of this graph is that its diameter is at most 4` + 3 if the n/4-bit vectors x =
x1, x2, . . . , xn/4 and y = y1, y2, . . . , yn/4 of ID-DISJ(n/2) are disjoint, and its diameter is at least 5` + 1
otherwise. The theorem follows.

14



6 Conclusions

In this paper we have presented a uniform approach to derive lower bounds on the number of messages
exchanged in synchronous distributed computations. The most interesting avenue for further research is to
explore the possibility of showing tight message lower bounds in the synchronous message-passing model
where the underlying topology is arbitrary. (Note that lower bounds for complete networks, while valid also
for arbitrary networks, might not be tight [7]). It is easy to show that in an arbitrary network any problem
can be solved by exchanging only O(m) messages, where m is the number of edges of the network, by
building a spanning tree and then sending all the information to the root of the tree, through its edges, by
using time encoding. However, this can take time at least exponential in the size of the input. It would be
interesting to explore such message-time tradeoffs.

References

[1] Y. Afek and E. Gafni. Time and message bounds for election in synchronous and asynchronous com-
plete networks. SIAM J. Comput., 20(2):376–394, 1991.

[2] C. Avin, M. Borokhovich, Z. Lotker, and D. Peleg. Distributed computing on core-periphery networks:
Axiom-based design. In Proceedings of the 41st International Colloquium on Automata, Languages,
and Programming (ICALP), Part II, pages 399–410, 2014.

[3] B. Awerbuch. Complexity of network synchronization. J. ACM, 32(4):804–823, 1985.

[4] B. Awerbuch, O. Goldreich, D. Peleg, and R. Vainish. A trade-off between information and communi-
cation in broadcast protocols. J. ACM, 37(2):238–256, 1990.

[5] B. Awerbuch and D. Peleg. Network synchronization with polylogarithmic overhead. In Proceedings
of the 31st Annual Symposium on Foundations of Computer Science (FOCS), pages 514–522, 1990.

[6] M. Braverman, F. Ellen, R. Oshman, T. Pitassi, and V. Vaikuntanathan. A tight bound for set dis-
jointness in the message-passing model. In Proceedings of the 54th Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pages 668–677, 2013.

[7] A. Chattopadhyay, J. Radhakrishnan, and A. Rudra. Topology matters in communication. In Pro-
ceedings of the 55th IEEE Annual Symposium on Foundations of Computer Science (FOCS), pages
631–640, 2014.

[8] A. Das Sarma, S. Holzer, L. Kor, A. Korman, D. Nanongkai, G. Pandurangan, D. Peleg, and R. Wat-
tenhofer. Distributed verification and hardness of distributed approximation. SIAM J. Comput.,
41(5):1235–1265, 2012.

[9] A. K. Dhulipala, C. Fragouli, and A. Orlitsky. Silence-based communication. IEEE Transactions on
Information Theory, 56(1):350–366, 2010.

[10] D. Dolev and T. Feder. Determinism vs. nondeterminism in multiparty communication complexity.
SIAM J. Comput., 21(5):889–895, 1992.

[11] A. Drucker, F. Kuhn, and R. Oshman. On the power of the congested clique model. In Proceedings of
the 33rd ACM Symposium on Principles of Distributed Computing (PODC), pages 367–376, 2014.

[12] M. Elkin. An unconditional lower bound on the time-approximation trade-off for the distributed mini-
mum spanning tree problem. SIAM J. Comput., 36(2):433–456, 2006.

15



[13] F. Ellen, R. Oshman, T. Pitassi, and V. Vaikuntanathan. Brief announcement: Private channel models
in multi-party communication complexity. In Proceedings of the 27th International Symposium on
Distributed Computing (DISC), pages 575–576, 2013.

[14] G. N. Frederickson and N. A. Lynch. Electing a leader in a synchronous ring. J. ACM, 34(1):98–115,
1987.

[15] S. Frischknecht, S. Holzer, and R. Wattenhofer. Networks cannot compute their diameter in sublinear
time. In Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 1150–1162, 2012.

[16] R. G. Gallager, P. A. Humblet, and P. M. Spira. A distributed algorithm for minimum-weight spanning
trees. ACM Trans. Program. Lang. Syst., 5(1):66–77, 1983.

[17] J. W. Hegeman, G. Pandurangan, S. V. Pemmaraju, V. B. Sardeshmukh, and M. Scquizzato. Toward
optimal bounds in the congested clique: Graph connectivity and MST. In Proceedings of the 2015
ACM Symposium on Principles of Distributed Computing (PODC), pages 91–100, 2015.

[18] R. Impagliazzo and R. Williams. Communication complexity with synchronized clocks. In Proceed-
ings of the 25th Annual IEEE Conference on Computational Complexity (CCC), pages 259–269, 2010.

[19] V. King, S. Kutten, and M. Thorup. Construction and impromptu repair of an MST in a distributed
network with o(m) communication. In Proceedings of the 2015 ACM Symposium on Principles of
Distributed Computing (PODC), pages 71–80, 2015.

[20] H. Klauck, D. Nanongkai, G. Pandurangan, and P. Robinson. Distributed computation of large-scale
graph problems. In Proceedings of the 26th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 391–410, 2015.

[21] L. Kor, A. Korman, and D. Peleg. Tight bounds for distributed minimum-weight spanning tree verifi-
cation. Theory Comput. Syst., 53(2):318–340, 2013.

[22] E. Korach, S. Moran, and S. Zaks. The optimality of distributive constructions of minimum weight and
degree restricted spanning trees in a complete network of processors. SIAM J. Comput., 16(2):231–236,
1987.

[23] E. Korach, S. Moran, and S. Zaks. Optimal lower bounds for some distributed algorithms for a com-
plete network of processors. Theor. Comput. Sci., 64(1):125–132, 1989.

[24] E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge University Press, 1997.

[25] S. Kutten, G. Pandurangan, D. Peleg, P. Robinson, and A. Trehan. On the complexity of universal
leader election. J. ACM, 62(1):7:1–7:27, 2015.

[26] S. Kutten, G. Pandurangan, D. Peleg, P. Robinson, and A. Trehan. Sublinear bounds for randomized
leader election. Theor. Comput. Sci., 561:134–143, 2015.

[27] C. Lenzen. Optimal deterministic routing and sorting on the congested clique. In Proceedings of the
2013 ACM Symposium on Principles of Distributed Computing (PODC), pages 42–50, 2013.

[28] B. Liskov. Practical uses of synchronized clocks in distributed systems. Distrib. Comput., 6(4):211–
219, 1993.

16



[29] Z. Lotker, B. Patt-Shamir, E. Pavlov, and D. Peleg. Minimum-weight spanning tree construction in
O(log log n) communication rounds. SIAM J. Comput., 35(1):120–131, 2005.

[30] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers Inc., 1996.

[31] D. Nanongkai, A. D. Sarma, and G. Pandurangan. A tight unconditional lower bound on distributed
randomwalk computation. In Proceedings of the 30th Annual ACM Symposium on Principles of Dis-
tributed Computing (PODC), pages 257–266, 2011.

[32] R. Oshman. Communication complexity lower bounds in distributed message-passing. In Proceed-
ings of the 21th International Colloquium on Structural Information and Communication Complexity
(SIROCCO), pages 14–17, 2014.

[33] G. Pandurangan, P. Robinson, and M. Scquizzato. Fast distributed algorithms for connectivity and
MST in large graphs. In Proceedings of the 28th ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA), 2016. To appear.

[34] D. Peleg. Distributed Computing: A Locality-Sensitive Approach. Society for Industrial and Applied
Mathematics, 2000.

[35] D. Peleg and V. Rubinovich. A near-tight lower bound on the time complexity of distributed minimum-
weight spanning tree construction. SIAM J. Comput., 30(5):1427–1442, 2000.

[36] D. Peleg and J. D. Ullman. An optimal synchronizer for the hypercube. SIAM J. Comput., 18(4):740–
747, 1989.

[37] A. A. Razborov. On the distributional complexity of disjointness. Theor. Comput. Sci., 106(2):385–
390, 1992.

[38] N. Santoro. Design and Analysis of Distributed Algorithms. Wiley-Interscience, 2006.

[39] J. Schneider and R. Wattenhofer. Trading bit, message, and time complexity of distributed algorithms.
In Proceedings of the 25th International Symposium on Distributed Computing (DISC), pages 51–65,
2011.

[40] G. Tel. Introduction to Distributed Algorithms. Cambridge University Press, 2nd edition, 2001.

[41] P. Tiwari. Lower bounds on communication complexity in distributed computer networks. J. ACM,
34(4):921–938, 1987.

[42] D. Van Gucht, R. Williams, D. P. Woodruff, and Q. Zhang. The communication complexity of dis-
tributed set-joins with applications to matrix multiplication. In Proceedings of the 34th ACM Sympo-
sium on Principles of Database Systems (PODS), pages 199–212, 2015.

[43] D. P. Woodruff and Q. Zhang. When distributed computation is communication expensive. Distrib.
Comput., to appear.

[44] A. C.-C. Yao. Some complexity questions related to distributive computing. In Proceedings of the
11th Annual ACM Symposium on Theory of Computing (STOC), pages 209–213, 1979.

17


	Introduction
	Our Contributions
	Further Related Work

	Preliminaries: Models, Assumptions, and Notation
	Efficient Network Synchronization and the Synchronous Simulation Theorem
	The Simulation
	Analysis of Complexity
	Message Lower Bound for Synchronous Distributed Computations

	Message-Time Tradeoffs for Synchronous Distributed Computations
	Sorting
	Matrix Multiplication
	Statistical and Graph Problems

	Unconditional Message Lower Bounds for Synchronous Distributed Computations
	Selection
	Graph Problems in the Edge-Partitioning Model
	Graph Problems in the Vertex-Partitioning Model
	Connectivity
	Diameter


	Conclusions

