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Abstract

A fundamental question in the setting of anonymous graphs concerns the ability of nodes
to spontaneously break symmetries, based on their local perception of the network. In con-
trast to previous work, which focuses on symmetry breaking under arbitrary port labelings,
in this paper, we study the following design question: Given an anonymous graph G with-
out port labels, how to assign labels to the ports of G, in interval form at each vertex, so
that symmetry breaking can be achieved using a message-passing protocol requiring as few
rounds of synchronous communication as possible?

More formally, for an integer l > 0, the truncated view Vl(v) of a node v of a port-labeled
graph is defined as a tree encoding labels encountered along all walks in the network which
originate from node v and have length at most l, and we ask about an assignment of labels
to the ports of G so that the views Vl(v) are distinct for all nodes v ∈ V , with the goal being
to minimize l.

We present such efficient port labelings for any graph G, and we exhibit examples of
graphs showing that the derived bounds are asymptotically optimal in general. More pre-
cisely, our results imply the following statements.

1. For any graph G with n nodes and diameter D, a uniformly random port labeling
achieves l = O(min(D, log n)), w.h.p.

2. For any graph G with n nodes and diameter D, it is possible to construct in polynomial
time a labeling that satisfies l = O(min(D, log n)).

3. For any integers n ≥ 2 and D ≤ log2 n − log2 log2 n, there exists a graph G with n
nodes and diameter D which satisfies l ≥ 1

2D −
5
2 .
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1 Introduction

Consider a network G in which nodes have no identifiers but ports at each node of degree d are
uniquely labeled with the integers from 1 to d (in any order). A view from a node v in such
a network is a rooted infinite tree defined recursively. This tree is composed of the views from
all the neighbors of v connected to the root (corresponding to node v) using the edges with the
same port labels as the edges connecting v to their children in graph G.

The concept of a view is useful for many applications as it allows for identification of the
network topology and for breaking of symmetries between nodes. For example, the topological
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knowledge which can be gathered by a node of an anonymous graph running a deterministic
algorithm, in a setup defined identically (uniformly) over nodes, corresponds to its view. More
precisely, in an anonymous communication network, in k rounds, each node can learn up to
k levels of its view. An important question for such applications is to determine the smallest
possible integer l (also called the level of symmetry of G) such that for all the different views,
their subtrees truncated at depth l are also different. As observed in [16] in the context of
leader election in the LOCAL model, learning l levels of all the views is sufficient and necessary
to determine whether leader election in the LOCAL model is feasible, hence l determines the
number of communication rounds to elect a leader.

Another example of applications concerns walker-based models of computation. The infor-
mation gathered by a walker traversing an anonymous graph, which does not have the ability
to write to its environment, is simply a subtree of the view from its starting vertex. Hence, for
example, rendezvous of deterministic walkers is only possible if they start from positions with
different views.

A lot of the related work so far has considered the question of bounding the largest possible
level of symmetry (taken over all labelings). By contrast, in this work, we would like to focus
on the best case labelings, i.e., those having the smallest possible level of symmetry. Moreover,
we also look at the case of uniformly random labelings to verify whether the average case is
closer to the best or the worst case.

1.1 Overview of results

For a graph G with labeling λ, we define the level of symmetry l(G,λ) as the smallest integer
l such that views from any two nodes, truncated at depth l, are different. If there exists a pair
of nodes whose infinite views are equal, we say that the level of symmetry is infinite. For an
unlabeled graph G, we refer to its level of symmetry as l(G) = minλ l(G,λ), where the minimum
is taken over all port labelings λ of G. We show the following results:

We first show that, for any graph G with n nodes and diameter D, the level of symmetry
in the best case is O(min(D, log n)) by proposing an algorithm that labels any graph in such
a way that the resulting labeled graph has level of symmetry O(min(D, log n)). Secondly, we
show that a uniformly random labeling λ achieves level of symmetry l(G,λ) = O(min(D, log n)),
w.h.p. Thirdly, we exhibit examples of graphs showing that these bounds are asymptotically
tight in general.

1.2 Related work

The notion of view was introduced and first studied by Yamashita and Kameda in [29] in
the context of distributed message passing algorithms. Yamashita and Kameda proved that if
views of two nodes truncated to depth n2 are identical, then their infinite views are identical
[29], where n is the number of nodes of the network. The bound has been improved to n − 1
by Norris [24]. Although this bound is asymptotically tight [1, 24], it is far from being accurate
for many networks. Hence, one may ask for bounds expressed as a function of different graph
invariants. Fraigniaud and Pelc proved in [15] that if two nodes have the same views to depth
n̂− 1 then their views are the same, where n̂ is the number of nodes having different views (or
equivalently, n̂ is the size of the quotient graph [29]). For some works on view computation see,
e.g., [2, 26]. Recently, Hendrickx [20] proved (for simple graphs with symmetric port labeling)
an upper bound of O(D log(n/D)) on the depth to which views need to be checked in order to be
distinguished, where D is the diameter of the network, leaving the tightness of this bound as an
open problem. A complementary bound of Ω(D log(n/D)) was shown in [9], and independently
in [16] for the special case when D = O(1).
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View-based approaches have been successfully used when designing algorithms for various
network problems, for example in leader election [4, 7, 11, 12, 16, 27, 30]. In anonymous, port-
labeled networks, the time to elect a leader or to declare the election infeasible is equal to Θ(D+
l) [16] hence is Θ(D log(n/D)) [9, 20] for the worst-case port labeling. Our results show that
for the best- and random-case labeling the time of leader election reduces to O(min(D, log n)).

View-based approaches have also been used for map construction [3, 10, 12], rendezvous
[6, 8, 19], and other tasks [14, 28].

The result of Norris [24] is indeed more general as it works also for directed graphs and
shows that in directed graphs the level of symmetry is at most n− 1. We may also consider the
problem of distinguishing the views of two nodes from different graphs. We are interested in
whether the isomorphism of two views truncated to a certain depth implies the isomorphism of
the infinite views. Krebs and Verbitsky [23] showed that it is possible to construct two directed
graphs, both with at most n nodes, such that the truncated views of two nodes from different
graphs are isomorphic up to depth (2− o(1))n.

In port-labeled graphs, the problem of setting the port labels to allow for quick exploration
by a simple agent is well-studied. In most of the existing results, the considered agent is
performing a so-called basic walk which consists in taking the port number x+ 1 after entering
a node via port number x (where x + 1 is taken modulo the degree of the node). It turns out
that it is possible to find a port labeling such that an agent following the basic walk will explore
the given graph in a number of rounds linear in n [5, 13, 17, 18, 21, 22]. The question whether a
port labeling allowing the basic walk to visit all the vertices can be assigned by a mobile agent
making only local changes was posed in [13]. Steinová [25] answered affirmatively by exhibiting
an agent with O(log n) bits of memory and one droppable pebble that assigns such a labeling.

1.3 Preliminaries and notation

In this work, we consider anonymous port labeled (simple and undirected) networks G = (V,E)
(the terms graph and network are used interchangeably throughout) in which the nodes do not
have identifiers and each edge {u, v} has two integers assigned to its endpoints, called the port
numbers at u and v, respectively. The port numbers are assigned in such a way that for each
node v they are pairwise different and they form a consecutive set of integers {1, . . . , d}, where
d is the number of neighbors of v in G.

The number of neighbors of v in G is called the degree of v and is denoted by degG(v). The
maximum degree of G (taken over all nodes v) is denoted by ∆(G). The diameter of G, denoted
by D, is the maximum (taken over all pairs of nodes u and v) length of a shortest path between
u and v in G. For a node v ∈ V , we write (G, v) to denote the rooted graph G with root v. For
any V ′ ⊆ V , we denote by G[V ′] the subgraph of G induced by V ′ and by G[U ] \G[U ′] graph
G[U ] without the edges that belong to G[U ′]. The set of nodes at distance at most l from a
node v ∈ V is denoted by Nl(v), with N(v) = N1(v). A rooted subgraph Bl(v) of all nodes and
edges reachable from v in a walk of at most l steps, Bl(v) = (G[Nl(v)] \G[Nl(v) \Nl−1(v)], v),
will be called the radius-l ball around v. We recall the definition of a view [29]. Let G be a
graph, v be a node of G and let λ be a port labeling for G. Given any l ≥ 0, the (truncated)
view up to level l, Vl(v), is defined as follows. V0(v) is a tree consisting of a single node x0.
Then, Vl+1(v) is the port-labeled tree rooted at x0 and constructed as follows. For every node
vi, i ∈ {1, . . . ,degG(v)}, adjacent to v in G there is a child xi of x0 in Vl+1(v) such that the
port number at x0 corresponding to edge {x0, xi} equals λ(v, vi), and the port number at xi
corresponding to edge {x0, xi} equals λ(vi, v). For each i ∈ {1, . . . ,degG(v)} the node xi is the
root of the truncated view Vl(vi). The view from v in G is the infinite port-labeled rooted tree
V(v) such that Vl(v) is its truncation to level l, for each l ≥ 0.
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We will denote by C(G) the number of distinct labelings of a graph G. Notice that for
each node v, its labeling can be defined independently of the other nodes in degG(v)! different
ways, hence if the nodes of the graph were distinguishable then the number of distinct labelings
would be equal to

∏
v∈V degG(v)!. In our setting, nodes have no identifiers hence C(G) ≤∏

v∈V degG(v)!.

Lemma 1.1. The following bound holds for all l > 1 and all connected graphs G with more
than 2 nodes:

C(Bl(v)) ≤ C(G[Nl(v)]) ≤ (∆(G[Nl−1(v)]))2|E(G[Nl−1(v)])| ≤ 22|E(Bl(v))| log2 ∆(Bl(v)). (1)

Proof. From the definitions of Nl(v) and Bl(v) we have, for any l, that Bl−1(v) is a subgraph of
G[Nl−1(v)], and G[Nl−1(v)] is a subgraph of Bl(v). This shows the first and the last inequalities
of (1).

Denote H = G[Nl−1(v)]. We have C(H) ≤
∏
v∈H degH(v)!. The middle inequality of (1)

can be shown using the fact that k! ≤ kk, for all k > 0.

2 Lower bounds

We start by providing a lower bound based on the following observation. Consider a graph G
with labeling λ. If, for some integer l > 0 and for a pair of distinct nodes u, v ∈ V , their views
truncated to depth l are distinct, but their radius-l balls are isomorphic (i.e., Vl(u) 6= Vl(v)
and Bl(u) ≡ Bl(v)), then the labeling λ around nodes u and v, restricted to their radius-l
balls, must be distinct, i.e., λ[Bl(u)] 6= λ[Bl(v)]. It follows that if the number of isomorphic
radius-l balls around nodes of G exceeds the number of possible labelings of such balls, we must
have l(G) > l. (Here, isomorphism of rooted graphs (H1, v1) and (H2, v2) is understood as an
isomorphism between H1 and H2 which maps v1 into v2.)

Lemma 2.1. Given a graph G and l > 0, let S ⊆ V be a subset of vertices such that all
radius-l balls around nodes from S are isomorphic to some rooted graph B, Bl(v) ≡ B. Then,
C(B) < |S| =⇒ l(G) > l.

The above lemma immediately implies the following two corollaries, the first of which applies
inequality (1).

Corollary 2.1. Given a connected graph G and l > 0, let S ⊆ V be a subset of vertices such
that all radius-l balls around nodes from S are isomorphic to some rooted graph B, Bl(v) ≡ B.
Then, |E(B)| log2 ∆(B) < 1

2 log2 |S| =⇒ l(G) ≥ l.

Corollary 2.2. When G is a line or a ring, we have l(G) ≥ 1
2 log2 n− 2.

Proposition 2.1. For any integers n ≥ 2 and D ≤ log2 n− log2 log2 n, there exists a graph G
with n nodes and diameter D which satisfies l(G) ≥ 1

2D −
5
2 .

Proof. Assume that D is even. If D < 6 then the claim is trivial hence we assume that D ≥ 6.
It can be easily verified that for D ≤ log2 n − log2 log2 n and n ≥ 2 we have b n−1

D−2c ≥ 4. We

construct a wheel graph G from a cycle with n− 1 nodes and a node v connected to x = b n−1
D−2c

almost-equidistant nodes s1, s2, . . . , sx on the cycle (see Figure 1 for an example). We choose
nodes s1, s2, . . . , sx along the cycle in such a way that the distance between two consecutive
nodes si and si+1 (and between sx and s1) on the cycle is either D − 1 or D − 2. Let ci be a
middle node of each such path and let cx be a middle node on the path between sx and s1 (if
the path has D − 1 edges then there are two middle nodes). Distance between any two (not
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Figure 1: Illustration of wheel graph for n = 34 and D = 6.

consecutive) ci and cj is exactly D, because the shortest path goes via v and such not consecutive
middle nodes exist because x ≥ 4. Observe that the diameter of the graph is exactly D, because
distance from v to any node is at most D/2. View from each ci up to depth D/2− 2 is a path
with D − 3 nodes. There are 2D−4 possible labellings of such paths because at each vertex,
different from ci, we can either put port 1 towards ci or away from ci. Observe that

2D−4 ≤ 1

16
2log2 n−log2 log2 n =

n

16 log2 n
<

⌊
n− 1

D − 2

⌋
.

Hence, by the pigeonhole principle, for at least two different nodes ci, cj their respective views
up to depth D/2 − 2 are equal. Now observe that the view from the central node v is unique
already at depth 1 hence by [20, Lemma 4], views from any pair of nodes is unique up do depth
D + 1. This shows that l(G) ≥ D/2− 2.

If D is odd we construct the wheel graph on n − 1 nodes and diameter D − 1 and attach
an extra node w to one of the middle nodes c. The construction of the wheel graph is possible
because b n−2

D−3c ≥ 4 holds true under our assumptions. We disregard the subpath to which we

attach node w hence we obtain
⌊
n−2
D−3

⌋
− 1 paths of length D − 4. Similarly as in the previous

case we have 2D−5 possible labelings of the paths and

2D−5 ≤ 1

32
2log2 n−log2 log2 n =

n

32 lg n
<

⌊
n− 2

D − 3

⌋
− 1.

Hence for odd D we obtain that l(G) ≥ (D − 1)/2− 2.

3 Upper bounds

In this section we want to propose algorithms for labeling of general graphs that will guarantee
that all views up to certain depths will be distinct.

We will start by describing a simple procedure Greedy for labeling the ports of the graph.
We start with a non-empty set X of nodes such that for any pair of nodes u, v ∈ X, if there is
an edge between u and v then it has already been labeled (i.e., both ends of the edge have been
labeled). Procedure Greedy labels all the remaining edges.
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Procedure Greedy: We pick any node v /∈ X and adjacent to some node from X. We label
all the edges between v and the nodes from X (in any order) by choosing the smallest available
label at both endpoints of such edges and we add v to X. Repeat until all edges are labeled.

Let us also define two invariants. We will show that procedure Greedy maintains those
invariants.

Invariants (∗): If at some step vertex x ∈ X has α neighbors in X then it has port labels
from 1 to α used to label the edges to these neighbors. The second invariant states that each
x ∈ X has at least one neighbor in X.

Lemma 3.1. If set X satisfies invariants (∗) then procedure Greedy used with X as the initial
set, labels all the remaining edges without using label pair (1, 1) on any newly labeled edge.

Proof. Since graph G is connected then by repeating procedure Greedy we label all the edges of
the graph.

In a single step we pick a vertex y not in X, but adjacent to some vertices from X, we
label all the edges connecting y to vertices from X using the first available port numbers hence
the invariant is maintained. From the invariant, port pair (1, 1) will not be used on any edge
labeled by the procedure Greedy.

Theorem 3.1. For any graph G of diameter D, we have l(G) ≤ D+ 1. Moreover, a labeling λ
such that l(G,λ) ≤ D + 1 can be constructed in polynomial time.

Proof. We want to first show a procedure assigning labels in any graph in such a way that there
always exists a node with a unique view up to depth 1. The rest follows from [20, Lemma 4]
because then each view up do depth D + 1 is unique.

Take any graph G with at least 2 edges. If G has a leaf (i.e., a node with degree 1) we assign
label 1 to both endpoints of its unique incident edge. In this case we define set X to initially
contain both endpoints of the edge.

On the other hand if G has no leaf then it has a cycle. We take this cycle (call it C) and
label both endpoints of its edges with port numbers 1 and 2 as in Figure 2. We fix an arbitrary
node v from cycle C and label its outgoing edges with label pairs (1, 1) and (2, 2). All other
edges of cycle C get labeled with label pairs (1, 2). If there are other edges in G between the
nodes of the cycle their labels are chosen by simply taking the first available label. In this case
set X is defined to initially contain all nodes of the cycle. Observe that in both cases all edges
with both endpoints in X have already been labeled.

The remaining labels are chosen by repeating procedure Greedy.
Since invariants (∗) are satisfied at the beginning of the procedure then procedure Greedy

will not put port numbers (1, 1) on any newly labeled edge.
Now observe that in the first case the view from the leaf is unique and in the second case

the view from v is unique already at depth 1.

For a given orientation ~G of the edges of G, we denote by indeg ~G(v) (outdeg ~G(v)) the number

of oriented edges entering (leaving) a vertex v. We also denote by ~Nl(v) ⊆ Nl(v) the subset of
nodes reachable from v by following an outward-oriented path of at most l edges, starting from
node v. Likewise, the radius-l out-ball of v is defined as ~Bl(v) = (~G[ ~Nl(v)]\ ~G[ ~Nl(v)\ ~Nl−1(v)], v).

Lemma 3.2. Let λ be a port labeling of G chosen uniformly at random. Then, for any pair of
distinct nodes u, v ∈ V and any orientation ~G of G, we have under labeling λ:

Pr[Vl(u) = Vl(v)] ≤

 ∏
w∈ ~Nl(v)

(
(indeg ~Bl(v)(w)− 1)! degG(w)

)−1/2

.
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Figure 2: Labeling of cycle C.

Proof. We consider a process in which the labels of all ports at all nodes in λ are treated
as initially covered cards with numbers written on their backs. Each node of degree d hands
out a perfectly shuffled set of d cards with numbers {1, . . . , d} written on their backs to the d
ports adjacent to it. We consider a process in which we sequentially consider edges of G (in
some, possibly adaptive order), and in each time step uncover the cards at both ports of both
endpoints of the edge. By pt(w) we denote the indegree of w with respect to covered incoming
edges of ~G, only, at the start of the t-th time step (initially, p1(w) = indeg ~Bl(v)(w)). By qt(w)

we denote a variable defined as qt(w) = degG(w)
indeg ~Bl(v)

(w) if all edges adjacent to w are covered at

time t, and qt(w) = 1 otherwise. For any pair of nodes u, v and integer i we define a subgraph
VPMu( ~Bi(v)) as a “view preserving mapping” of ~Bi(v). We build VPMu( ~Bi(v)) in the following
way. We take all directed paths of length i starting at v. For each such path we search for
isomorphic with respect to λ path starting from u. Whenever such a path exists, we add its
edges to VPMu( ~Bi(v)). If for some path P from v there is no isomorphic path from u then we
will say that the path corresponding to P is empty (in this case we immediately distinguish
views of u and v at depth i). We denote by St the event that after t steps of the process the
views from u and v are equal.

The process proceeds in l stages, and we assume that at the beginning of the i-th stage,
i = (1, 2, . . . , l), all edges from ~Bi(v)∪VPMu( ~Bi(v)) have been uncovered. In the i-th stage of the
process, we sequentially consider edges connecting node pairs {wi−1, wi}, where wi−1 ∈ ~Ni−1(v),
wi ∈ ~Ni(v), such that the edge {wi−1, wi} ∈ E(G) is oriented from wi−1 towards wi in E(G).

By the definition of our process, some shortest oriented path ~P = (v = w0, w1, . . . , wi−1, wi),
with wj ∈ ~Nj(v) \ ~Nj−1(v), has already been uncovered save for its last edge {wi−1, wi}, and
so has the unoriented path P ′ originating at u and isomorphic to the unoriented version of
~P . If edge {wi−1, wi} is still uncovered, we uncover it together with its (possibly uncovered)
counterpart {w′i−1, w

′
i} in path P . (Remark that if wi = w′i, then we have an immediate

distinction of the two considered views.) We observe that if two edges are uncovered in the
current step t, then we have:

Pr[St] ≤
1

max{pt(wi)qt(wi), pt(w′i)qt(w′i)}
Pr[St−1]
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with pt+1(wi) = pt(wi) − 1, pt+1(w′i) = pt(w
′
i) − 1, and pt+1(x) = pt(x) for all other nodes x;

we also set qt+1(wi) = qt+1(w′i) = 1 and qt+1(x) = qt(x) for all other nodes x. However, if edge
{w′i−1, w

′
i} was already previously uncovered, then we have:

Pr[St] ≤
1

pt(wi)qt(wi)
Pr[St−1]

with pt+1(wi) = pt(wi)− 1, and pt+1(x) = pt(x) for all other nodes x; we also set qt+1(wi) = 1
and qt+1(x) = qt(x) for all other nodes x. Denoting Πt =

∏
w∈ ~Bl(v)(pt(w)!qt(w)), we notice that

in both cases the following inequality holds:

Pr[St] ≤
√

Πt+1

Πt
Pr[St−1]

By combining the above inequalities over all l phases of the process, in the final step m of the
process we have Πm = 1 and we eventually obtain:

Pr[Vl(u) = Vl(v)] = Pr[Sl] ≤ Π
−1/2
1 ,

which, taking into account the definition of Π1, p1, and q1, is exactly the claim of the lemma.

Choosing as ~G a BFS-out-orientation from vertex v (with edges within BFS levels arbitrarily
oriented), we have ~Nl(v) = Nl(v), and we obtain the following corollary that follows directly
from Lemma 3.2.

Corollary 3.1. Let λ be a port labeling of G chosen uniformly at random. Then, for any pair
of distinct nodes u, v ∈ V , we have under labeling λ:

Pr[Vl(u) = Vl(v)] ≤
∏

w∈Nl(v)

(degG(w))−1/2.

We use the above to show the following theorem.

Theorem 3.2. There exists an absolute constant c such that, for any graph G with n nodes
and diameter D, a uniformly random labeling λ satisfies l(G,λ) ≤ cmin{D, log2 n}, w.h.p.1

Proof. Let us call any node with degree at least 2 a non-leaf. In our proof we will consider two
cases. First assume that in G there are at least 6 log2 n non-leaves. Let l = min{6 log2 n+1, D}.
For any v, in Bl(v) there are at least 6 log2 n non-leaves. Hence by Corollary 3.1, for any u, v
we have Pr[Vl(u) = Vl(v)] ≤ n−3. By taking a union bound over all pairs of vertices we get that
with probability at least n−1 all pairs of vertices are distinguished within radius l.

Now, consider the case where in G there are less than 6 log2 n non-leaves. Then the diameter
of G is at most 6 log2 n+1. We will first compute the probability that all pairs of non-leaves can
be distinguished within radius D. Let us fix any pair of different non-leaves u, v and compute the
probability that, under random labeling, their views are equal up do depth D. We will, similarly
as in the proof of Lemma 3.2 expose the port labels sequentially. If degG u 6= degG v then u and
v are distinguished within radius 1. Among non-leaves there exists a node u′ (possibly equal to
u, but different from v) with degree at least n/(6 log2 n)− 1. Take the shortest path P from u
to u′. At every edge of P expose the port label of the port closer to u (the other port remains
covered). Consider a path P ′ that has the same port numbers on the exposed ports but it starts
at v. If the views of u and v are to be equal, P ′ must lead to another vertex with degree at least

1With high probability means here with probability at least 1 −O(polylogn/n).
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n/(6 log2 n)−1, call it v′. If u′ = v′, the views are already distinguished by the properties of the
port labeling. Otherwise observe that the last ports on paths P and P ′ have to be equal, and
since there are at least n/(6 log2 n) − 1 possibilities, then it is equal with probability at most
6 log2 n/(n − 6 log2 n). Hence Pr[Vl(u) = Vl(v)] ≤ 6 log2 n/(n − 6 log2 n). By taking the union
bound over all non-leaves we get that with probability at least 1− 108 log3

2 n/(n− 6 log2 n) all
pairs of non-leaves are distinguished within radius D. This finishes the proof because the leaves
can be distinguished using their unique neighbor (which is a non-leaf).

We remark that for a graph constructed from two equal stars connected with an edge,
the probability that the centers are indistinguishable (to any depth) is 4/(n − 2). Hence the
probability in our bound can be improved by at most a polylogarithmic factor.

The labelings given by Theorem 3.2 are non-constructive. By Theorem 3.1, we know how to
constructively obtain a labeling λ satisfying l(G,λ) = O(D). We now show how to constructively
obtain l(G,λ) = O(log n). As a warmup exercise, we first perform the construction for the case
when G is a path.

Proposition 3.1. When G is a path, it is possible to construct in polynomial time a labeling λ
such that l(G,λ) = O(log n).

Proof. Encode the sequence of integers 1 ∗ 2 ∗ . . . ∗ on the ports of the path in binary, using a
bit coding convention: 0 = aa, 1 = ab, ∗ = abbabbba. Here, a means an edge with identical port
labels at its endpoints, and b an edge with different ones.

We want to show that under such a labeling, within radius l = 2 log2 n+ 12, each node has
a unique view. We can see the view from a node as a string of a and b. Observe that if the
view has depth l, then it contains at least two complete sequences ∗. Moreover, this sequence ∗
is the only place in the string that contains at least 2 consecutive b-s hence it can be identified.
Since, sequence ∗ is not a palindrome, then it allows to determine the orientation of the string.
The substring between the two sequences ∗ can then be correctly decoded as a number. From
the value of the number and the position of the node with respect to the first node encoding
this number, we can uniquely determine the position of the node on the path. Hence the view
up to depth l distinguishes all the nodes of the path.

Using the result for paths we can construct for any graph a labeling that yields logarithmic
level of symmetry.

Proposition 3.2. For any graph G, it is possible to construct in polynomial time a labeling λ
such that l(G,λ) = O(log n).

Proof. If D = O(log n), then the statement follows from Theorem 3.1. We assume here that
D ≥ 4 (log2 n+ 1).

Let x = 2dlog2 ne+ 15 and let S be a set of vertices in G that form a maximal independent
set in G2x. Such a set can be constructed in polynomial time. For any vertex v we can then
find a vertex s ∈ S that is at distance at most 2x to v. Moreover any two vertices s, s′ ∈ S
are at distance more than 2x. Each s ∈ S can be seen a cluster center and the ball of radius
2x around s is its cluster. Note, that our clusters are not necessarily disjoint but each cluster
center belongs to exactly one cluster and balls of radius x from each cluster center are disjoint.
Hence, for each s ∈ S we can assign a simple path Ps (starting in s) of length x in such a way
that for any s, s′ ∈ S, their paths Ps and Ps′ are disjoint. For each s, we will label ports along
path Ps using only port labels 1 and 2. We pick an arbitrary order s1, s2, . . . , sk of the cluster
centers. For each si, we write its identifier i on the path Psi using port labels 1 and 2 using
the same coding as in the proof of Proposition 3.1. On Psi we write ∗i∗, where ∗ = abbabbba
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and i is encoded in binary where 0 = aa and 1 = bb. Here a means an edge with identical port
endpoints, and b an edge with different ones. We label the path in such a way that the first
a of each encoding is always a pair (1, 1) (the encoding defines the remaining labels). If the
encoding ends with pair (2, 2), we label one more edge with port pair (1, 1). The length of the
whole encoding is then at most 2dlog2 ne+ 15 hence the length of the path is sufficient. Let P̄si
be the subpath of Psi containing exactly the edges used to encode the identifier ∗i∗ (possibly
together with the additional edge).

The remaining edges are labeled as follows. We start with a set X of all the nodes whose
at least one adjacent edge has been labeled. First we label all edges connecting two vertices
from X, by picking the smallest available port number at both endpoints. We will not use port
1 because it has been used along the paths. Now all the remaining edges are labeled using
procedure Greedy. Observe that now set X satisfies invariants (∗) hence by using procedure
Greedy, we can label the remaining edges without putting port pair (1, 1) on any newly labeled
edge.

Now we want to show that under such labeling, all nodes have distinct views up to depth
3x. To show that all the views are distinct, for any node v we will find a tag i.e. a labeled path
in the view of v that will not appear in the view of any other node. In the view up to depth
3x, vertex v has at least one cluster center s ∈ S and its whole path P̄s. In labeled ball B3x(v)
we identify the set P of all paths induced by edges for which both endpoints were labeled using
only ports 1 and 2. We keep in P only those paths which start and end with an edge labeled
with (1, 1) and remove the other paths. By the construction of our labeling, edge labeled with
(1, 1) can only appear on a path P̄s of some cluster center s.

Now we remove from P all the paths that have more than x edges. Finally we remove from
P the paths that are subpaths of other paths from P. Each of the remaining paths A ∈ P is
exactly P̄s for some cluster center s. Path A cannot contain more than one P̄ path because the
length of A is at most x and the distance between the cluster centers is more than 2x. Path A
contains at least one P̄ because A starts and ends with an edge labeled with (1, 1) and A is not
a subpath of any P̄ path.

From each A ∈ P we can decode the identifier of the corresponding cluster center since ∗ is
not a palindrome and hence we can deduce the direction of the path. If we obtained multiple
identifiers of cluster centers for some starting vertex v, we simply pick the smallest one, call it
si. The tag of v will then be the shortest path from v to si concatenated with P̄si (if there are
multiple shortest paths, we choose the one lexicographically smallest under the chosen labeling).
We conclude the proof by observing that if for v, u their tags contain the same P̄si then, by the
properties of the port labeling, their paths to si have to be different.

4 Conclusion

In this paper, we have considered the problem of assigning labels to the ports of a graph G
so that the views Vl(v) are distinct for all nodes v ∈ V , and such that l is minimized. We
have shown that, for any graph G with n nodes and diameter D, a uniformly random labeling
achieves l = O(min(D, log n)), w.h.p., and that it is possible to construct in polynomial time
a labeling that satisfies l = O(min(D, log n)). In addition, we exhibited examples of graphs
showing that these bounds are asymptotically tight in general.

An interesting direction of future work would be an analogue of the result of Steinová [25]
in our setting. The goal is to propose a mechanism for the assignment (or reassignment) of the
port labels by a mobile walker which starts in a graph with initially empty (or arbitrary) port
labels, with the goal of obtaining a port labeling with small (best-case) level of symmetry. E.g.,
one could consider the implementation of the algorithm from Theorem 3.1 using a deterministic
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walker.
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