
Sparsifying Congested Cliques and Core-Periphery Networks

Alkida Balliu1,2, Pierre Fraigniaud∗1, Zvi Lotker†3, and Dennis Olivetti1,2

1 CNRS and University Paris Diderot, France.
2Gran Sasso Science Institute, L’Aquila, Italy.

3Ben Gurion University, Israel

Abstract

The core-periphery network architecture proposed by Avin et al. [ICALP 2014] was
shown to support fast computation for many distributed algorithms, while being much
sparser than the congested clique. For being efficient, the core-periphery architecture is
however bounded to satisfy three axioms, among which is the capability of the core to
emulate the clique, i.e., to implement the all-to-all communication pattern, in O(1) rounds
in the CONGEST model. In this paper, we show that implementing all-to-all communication
in k rounds can be done in n-node networks with roughly n2/k edges, and this bound is
tight. Hence, sparsifying the core beyond just saving a fraction of the edges requires to
relax the constraint on the time to simulate the congested clique. We show that, for p �√

log n/n, a random graph in Gn,p can, w.h.p., perform the all-to-all communication pattern
in O(min{ 1

p2 , np}) rounds. Finally, we show that if the core can emulate the congested
clique in t rounds, then there exists a distributed MST construction algorithm performing
in O(t log n) rounds. Hence, for t = O(1), our (deterministic) algorithm improves the best
known (randomized) algorithm for constructing MST in core-periphery networks by a factor
Θ(log n).

∗Additional supports from ANR project DISPLEXITY, and Inria project GANG.
†Additional supports from Fondation des Sciences Mathématiques de Paris (FSMP).

1 Introduction

1.1 Context and Objectives

Inspired by social networks and complex systems, Avin, Borokhovicha, Lotker, and Peleg [1] pro-
posed a novel network architecture for parallel and distributed computing, called core-periphery.
Interestingly, the core-periphery architecture is not described explicitly (e.g., via the descrip-
tion of a specific graph family), but rather implicitly via three so-called axioms. Specifically, a
core-periphery network G = (V,E) has its node set partitioned into a core C and a periphery P ,
and the three properties to be satisfied are then the following:

1. Core boundary: For every node v ∈ C, degC(v) ' degP (v), where, for S ⊆ V and
v ∈ V , degS(v) denotes the number of neighbors of v in S.

2. Clique emulation: the core can emulate the clique in a constant number of rounds in
the CONGEST model. That is, there is a communication protocol running in a constant
number of rounds in the CONGEST model such that, assuming that each node v ∈ C has a
message Mv,w on O(log n) bits for every w ∈ C, then, after O(1) rounds, every w ∈ C has
received all messages Mv,w, for all v ∈ C. In other words, the all-to-all communication
pattern can be implemented in a constant number of rounds.

3. Periphery-core convergecast: there is a communication protocol running in a con-
stant number of rounds in the CONGEST model such that, assuming that each node v ∈ P
has a message Mv on O(log n) bits, then, after O(1) rounds, for every v ∈ P , at least one
node in the core has received Mv.

Figure 1 provides an example of a core-periphery network, i.e., a graph satisfying the three
axioms. It was proved in [1] that these three axioms alone enable to design efficient distributed
algorithms in the CONGEST model for classical problems such as matrix multiplication and
MST construction. Most of the proposed algorithms are optimal in a sense that there is an
asymptotically matching lower bound on the number of rounds under the three axiomatic con-
straints. Moreover, it is shown that if only two out of three axioms were satisfied, then the round
complexity of all the considered problems would increase quite significantly — typically, from
O(1) to O(poly(n)) in n-node networks. There was an exception though: while the best known
lower bound in [1] for MST construction is Ω(1), the proposed (randomized) MST construction
algorithm runs in O(log2 n) rounds. (If only two out of three axioms were satisfied, then MST

construction would require at least Ω̃(n
1
4) rounds).

The core-periphery model provides an attractive alternative to the congested clique model [19].
Indeed, the latter assumes a complete network interconnecting the nodes, i.e., for every two (dis-
tinct) nodes u and v, there is an edge {u, v} connecting these nodes. The n-node congested
clique has therefore

(
n
2

)
edges, and every node has degree n− 1. Instead, assuming a core with,

e.g., O(
√
n) nodes, even connecting all nodes in the core as a clique would only result in O(n)

edges in the core, a number that is much more manageable in practice. On the other hand, it
was proved in [1] that Ω(

√
n) nodes is the limit of how small can be the core, and that the core

C must be dense, with Θ(|C|2) edges.
In this paper, our objective is twofold. First, we are aiming at establishing tradeoffs between

the number of edges, and the capability of emulating the clique. More precisely, we consider
the all-to-all communication pattern:

• Input: every node v has a message Mv,w, for every node w 6= v;

• Output: every node w has received the message Mv,w, for every node v 6= w.

1

Figure 1: Example of a core-periphery network, where the core (gray nodes) is a clique, and
the periphery (white nodes) is a sparse graph.

In the CONGEST model, assuming all messages are on O(log n) bits, all-to-all can be performed
in just a single round in the clique. Our first objective is to study the tradeoff between number
of edges, and number of rounds for performing all-to-all in the CONGEST model.

Our second objective is to revisit one of the main problems left open in [1], namely the
complexity of MST construction in the core-periphery model.

1.2 Our results

We show that, in the CONGEST model, implementing all-to-all communication in k rounds can
be done in n-node networks with roughly n2/k edges, and this bound is essentially tight because
every node must have degree at least (n− 1)/k to receive n− 1 messages in at most k rounds.
Hence, sparsifying the clique beyond just saving a fraction of the edges requires to relax the
constraint on the time to simulate that clique.

Our first main result is about the ability of random graphs to emulate the clique. Let
α =

√
3e/(e− 2) where e is the basis of the natural logarithm. We show that, for p ≥ α

√
lnn/n,

a random graph in Gn,p can, w.h.p., perform all-to-all in O(min{ 1
p2
, np}) rounds.

Our second main result is the design of a fast deterministic MST construction algorithm
for core-periphery networks under the CONGEST model. Specifically, we show that if the core
can emulate the clique in t rounds, then there exists a distributed MST construction algorithm
performing in O(t log n) rounds. Hence, for t = O(1), our deterministic algorithm performs in
O(log n) rounds, improving the randomized algorithm in [1] by a factor Θ(log n).

1.3 Related work

The congested clique model has been widely studied in the literature. Lenzen [18] investigated
the routing and sorting problems in the context of congested clique. He showed a deterministic
algorithm that, if each node is the sender and receiver of at most n messages, allows to route all
the messages in O(1) rounds in a clique of size n using messages of size O(log n). He also showed
an algorithm that allows to sort n2 keys in constant time. Drucker et al. [5] proved that the
congested clique is powerful enough to emulate certain classes of bounded depth circuits, which
shows how difficult finding lower bounds for the congested clique is. In the case where each node
can only broadcast, [5] gives upper and lower bounds for the problem of detecting some types
of subgraphs. Hegeman et al. [15] investigated the metric facility location problem providing a
O(1) approximation algorithm that runs in expected O(log log log n) rounds. They also showed
how to compute a 3-ruling set in the congested clique. In [14] it is shown that, under some

2

restrictions, fast algorithms for the congested clique model can be translated into fast algorithms
in the MapReduce framework. Censor-Hillel et al. [3] showed that matrix multiplication on
congested clique can be computed in O(n1−2/ω) rounds, where ω < 2.3728639 is the exponent
of matrix multiplication. Also, they showed how to use matrix multiplication to solve a variety
of graph related problems. In [19], Lotker et al. provided a deterministic MST construction
algorithm that runs in O(log log n) rounds in the congested clique. Then, Hegeman et al. [13]
showed that in this context randomization can help, giving a randomized algorithm that requires
O(log log log n) rounds. Recently, this complexity was even reduced further to O(log∗ n) in [12].

In general, the MST construction problem has been widely studied. In the distributed
asynchronous context, the most famous algorithm is the one of Gallager, Humblet and Spira [10]
that runs in O(n log n). In the synchronous setting, the first sublinear algorithm was given by

Garay et al. in [11] that runs in O(D+n
ln 3
ln 6 log∗ n), where D is the diameter of the graph. This

complexity was later improved to O(D+
√
n log∗ n) in [16]. Then, Peleg et al. [23] showed that

this complexity is near optimal, giving a Ω(
√
n

logn) lower bound. This bound was later improved

by Sarma et al. [24] to Ω(
√

n
logn) and then by Ookawa et al. [22] to Ω(

√
n). All these lower

bounds hold for graphs with diameter Ω(log n). For constant diameter graphs, there is a bound
Ω̃(n1/3) rounds for diameter 4, a bound Ω̃(n1/4) rounds for diameter 3, and a bound O(log n)
rounds for diameter 2 (see [20]). Finally, Elkin [6] showed that if termination detection is not
required, the diameter of the graph is not a lower bound, and that there exists an algorithm
that requires Õ(µ+

√
n) rounds, where µ is the so-called MST-radius of the graph.

Feige et al. [7] studied the broadcast problem in random graphs, where a single node has a
message that has to be received by all the nodes of the graph. They show that rumor spreading
(which propagates the message to a randomly chosen neighbor at each step) is an efficient way
to solve the broadcast problem for random graphs. Censor-Hillel et al. [4] studied the broadcast
problem in the context where every node is the source of a message and it is limited to send
the same message to each neighbor at each round. They give an efficient algorithm that solves
the problem, also in case of failures.

Finally, it is worth mentioning that a problem related to our results, that is finding disjoint
paths between pairs of nodes, has been largely investigated in expander graphs, which are sparse
graphs that guarantee strong connectivity properties [2, 8, 17, 9].

2 Deterministic Construction of Sparse Clique Emulators

In this section we provide a deterministic construction yielding a perfect tradeoff between num-
ber of edges and number of rounds in clique emulation.

Theorem 1 Let n ≥ 1, and k ≥ 3. There is an n-node graph with at most d k−2
(k−1)2 n

2e edges
that can emulate the n-node clique in k rounds. Also, there is an n-node graph with at most
1
3n

2 edges that can emulate the n-node clique in 2 rounds.

Proof. First, we show that there is an n-node graph with at most 1
3n

2 edges that can emulate
the n-node clique in 2 rounds. For this purpose, recall that the so-called Johnson graph J(n, r)
has vertex set composed of all the r-element subsets of the set {1, . . . , n}, and two vertices are
adjacent iff they meet in a (r − 1)-element set.

Claim 1 There exists an independent set I of size at least d 1n
(
n
3

)
e in the Johnson graph J(n, 3).

To establish the claim, for every k, 0 ≤ k < n, let us consider the set

Ik = {{x, y, z} ∈ V (J(n, 3)) | x+ y + z ≡ k (mod n)}

3

m
(c, b)

m
(b, a)

m
(a, b)

m
(b, c)

m
(c
, a
)

m
(a
, b
)

m
(b
, a
)

m
(a
, c
)

round 1 round 1round 2 round 2

c

ba b0,0 b0,1 b0,2 b1,0 b1,1 b1,2

a1 a2a0

Figure 2: (Left) Emulation of removed edge {a, b} (m(x, y) denotes the message from x to y).
(Right) Emulating K9 with K3,6. The plain red path (b0,1, a0, b0,2) is used at the 1st round
for exchanging messages between b0,1 and b0,2, and, at the 2nd round, it is used for sending
messages from b0,1 to b1,2, and from b0,2 to b1,1.

Every set Ik is an independent set. Indeed, if two triples {x, y, z} and {x, y, z′} are both in
Ik, then x + y + z ≡ k (mod n) and x + y + z′ ≡ k (mod n). Therefore, z ≡ z′ (mod n),
which implies z = z′, because z, z′ ∈ {1, . . . , n}. Observe that {I0, . . . , In−1} is a partition of
V (J(n, 3)). Therefore, one of them has size at least d 1n

(
n
3

)
e, which establishes the claim.

Let I as in Claim 1. Note that for any {a, b, c} ∈ I, none of the edges {a, b}, {a, c}, {b, c}
are appearing in any other triples of I. Thus, the edge {a, b} of the complete graph can be
emulated by the path {a, c}, {b, c} without congestion resulting from the emulation of another
edge {a′, b′}. Moreover, the edge {a, b} itself does not belong to any path used to emulate other
edges. It follows that one can remove |I| edges from Kn, one from each triple in the independent
set I, and all removed edges can be emulated by edge-disjoint paths of length 2. Fig. 2(left)
shows how to emulate the six communications x→ y for every ordered pair (x, y), x ∈ {a, b, c},
y ∈ {a, b, c}, x 6= y, in just 2 rounds. It follows that there is an n-node graph with at most n2

3
edges that can emulate the n-node clique in 2 rounds.

We now move on with the general case, that is, we show that there is an n-node graph with at

most dn
2(k−2)
(k−1)2 e edges that can emulate the n-node clique in k rounds.

Claim 2 All-to-all communication between the nodes of the same part of the complete bipartite
graph Kr,r can be performed in 2 rounds.

Indeed, let A and B be the two parts of Kr,r, where the nodes in A and B are labeled
a0, . . . , ar−1 and b0, . . . , br−1, respectively. Let us consider ai ∈ A, and its message for node
aj ∈ A. This message is routed via node bk ∈ B where i+ j + k ≡ 0 (mod r). This guarantees
that each edge is used at most once in each direction, at each round. Indeed, sender ai chooses
different intermediate nodes to route messages to the different receivers aj , j 6= i. Similarly, for
the same receiver j, different senders ai, i 6= j, choose different intermediate nodes. This proves
Claim 2.

By performing the above routing scheme in parallel, we directly get the following:

Claim 3 Let A and B be the two parts of the complete bipartite graph Kr,kr, and let us partition
the nodes of B into k groups B0, . . . , Bk−1 of r nodes each. The k all-to-all communication
patterns between the nodes of Bi can be performed in parallel for all i ∈ {0, . . . , k − 1}, in
2 rounds, also in parallel to all-to-all communication between the nodes of A.

We have now all the ingredients to establish the general case of Theorem 1. Let k ≥ 1,
and let Kr,kr be the n-node complete bipartite graph with r = n

k+1 nodes in the first part A,

4

and kr = nk
k+1 nodes in the other part B. Note that Kr,kr has kr2 = n2k

(k+1)2
edges. We show

how to perform all-to-all in Kr,kr in k + 2 rounds. We divide the kr nodes of B into k groups
B0, . . . , Bk−1 of r nodes each. For i ∈ {0, . . . , k − 1}, we set Bi = {bi,j , 0 ≤ j ≤ r − 1} —
cf. Figure 2(right). We describe a routing scheme that allows the kr nodes of B to perform
all-to-all, by relaying their messages using the r nodes of A. Routing is achieved by repeating
k times the all to all routing protocol in Claim 3, where, at each phase s = 1, . . . , k, nodes of
Bi perform the communications with the nodes in Bj+s mod k. Importantly, the above routing
scheme does not require 2k rounds but only k + 1 rounds, because the kr nodes in B do not
have to wait for receiving relayed messages in order to start sending new messages, and the
phases can be pipelined. One more round is used to route the direct communication between
every node in A and every node in B. Interestingly, during the k+ 1 rounds needed to perform
all-to-all communications between the nodes in B, the edges are always used in both directions,
except for the first and last round. We can use these two rounds to let the nodes in A perform
their own all-to-all among them using the same routing pattern as in Claim 2. In total, in the
n2k

(k+1)2
-edge graph Kr,kr, all-to-all is performed in k + 2 rounds. �

We complete the section by showing that the bounds in Theorem 1 provide an essentially
optimal tradeoff between the number of rounds k performed in the emulation, and the number
of edges m of the emulator. A trivial lower bound 1

2
n(n−1)

k can be obtained by noticing that
every node must have degree at least n−1

k for receiving n−1 messages in k rounds. The following
theorem improves this trivial bound by a factor 2, and matches with the bound in Theorem 1.

Property 1 Let n ≥ 1, k ∈ {1, . . . , n− 1}, and let G be an n-node graph that can emulate the

n-node clique in k rounds. Then G has at least n(n−1)
k+1 edges.

Proof. Let m be the number of edges of G. There are
(
n
2

)
pairs of nodes in Kn, communicating

n(n − 1) messages in total. In G, only m pairs of nodes are directly connected. All the other(
n
2

)
− m pairs of nodes are not directly connected, and they are at least at distance 2 in G.

Thus, the number of mesages generated to route the messages corresponding to these pairs of
nodes is at least 4(

(
n
2

)
−m). The total number of messages to be transferred is thus at least

2m+4(
(
n
2

)
−m). Since one communication round in G can route at most 2m messages, it follows

that any routing protocol requires at least
2m+4(n2)−4m

2m = n(n−1)
m − 1 rounds of communication.

Thus, k ≥ n(n−1)
m − 1, which implies m ≥ n(n−1)

k+1 . �

3 Randomized Construction of Sparse Clique Emulators

In this section, we consider clique emulation by Erdős-Rényi random graphs Gn,p. Our main
result is the following.

Theorem 2 Let c ≥ 0, n ≥ 1, α =
√

(3 + c)e/(e− 2) where e is the base of the natural
logarithm, and p ≥ α

√
lnn/n. For G ∈ Gn,p,

Pr[G can emulate Kn in O(min{ 1
p2
, np}) rounds] ≥ 1−O(1

n1+c)

where the big-O notations hide the dependency in c.

Proof. Let G ∈ Gn,p. The proof works as follows. For each missing edge in G between two
nodes u and v, we route the messages between these nodes via an intermediate node w, i.e.,
along a path (u,w, v) of length 2. The intermediate node is picked at random among all nodes

5

w such that {u,w} ∈ E(G), and {w, v} ∈ E(G). To analyze the load of the edges, we have to
overcome two problems. First, the load of an edge is not necessarily independent from the load
of another edge. Second, we are interested in the maximum, taken over all edges, of the load
of the edges. As a consequence, an analysis based only on the expectation of the load of each
edge may not yield accurate results. Instead, we base our analysis on a double application of a
balls-into-bins protocol.

We aim at constructing a path for routing the messages between every pair of nodes that
are not directly connected in G. As said before, the alternative paths used to replace missing
edges are of length 2, and the probability expressed in the statement of the theorem reflects
the probability that such paths exist, without too much congestion. More specifically, let us
consider a missing edge {i, j} in G. Let Si,j be the set of common neighbors to i and j in G.
The message from i to j is aimed at being routed via some intermediate node k ∈ Si,j . The
first question to address is thus: how large is Si,j? To answer this question, let Ei,j be the event

“there are at least np2

e different paths of length 2 between i and j”, and let E =
⋂
{i,j}/∈E(G) Ei,j .

Claim 4 Let αc =
√

(c+ 3)e/(e− 2), and p ≥ αc
√

lnn/n. Then

Pr[E] ≥ 1− 1

nc+1
.

To establish the claim, let Xi,j,k be the Bernoulli random variable, for {i, j} /∈ E(G), such that
Xi,j,k = 1 iff k ∈ Si,j , i.e., {i, k} ∈ E(G) and {k, j} ∈ E(G). Then let Xi,j =

∑n
k=1Xi,j,k. We

have Pr[Xi,j,k = 1] = p2, and, for a fixed pair i, j, the variables Xi,j,k, k = 1, . . . , n, are mutually
independent. Thus, using Chernoff bounds, we get:

Pr[Xi,j ≤
np2

e
] ≤ e(

2
e
−1)np2 .

By union bound, it follows that

Pr[
⋃

{i,j}/∈E(G)

Ei,j] ≤ n2e(
2
e
−1)np2 ≤ 1

nc+1

as desired, where the last inequality holds because p ≥ αc
√

lnn/n.

In addition to Claim 4, we will also use the following known result:

Lemma 1 ([21]) Let X1, . . . , Xn be a sequence of random variables in an arbitrary domain, and
let Y1, . . . , Yn be a sequence of binary random variables, with the property that Yi is a function
of the variables X1, . . . , Xi−1. If, for every i = 1, . . . , n, we have Pr[Yi = 1|X1, . . . , Xi−1] ≤ q
then Pr[

∑n
i=1 Yi ≥ k] ≤ Pr[B(n, q) ≥ k] where B(n, q) denotes the binomial distribution of

parameters n and q.

Our path construction algorithm for every missing edge {i, j} /∈ E(G) is sequential, and
proceeds as follows. For every {i, j} /∈ E(G), the path from i to j is not necessarily the same
as the path from j to i. We process all ordered pairs of nodes (i, j) in n phases, where Phase i,
i = 1, . . . , n, constructs all paths (i, j) for {i, j} /∈ E(G), in increasing order of j. Assume
already fixed a set of paths, corresponding to previously considered sender-receiver pairs, and
consider now the pair (i, j) (of course corresponding to the missing edge {i, j} /∈ E(G)). The
previously constructed paths induce some load on each edge of G, corresponding to the number
of paths using that edge. The choice of the path for (i, j) depends on this load, and is inspired
from the power of two choices in balls-and-bins protocols. Precisely, for suitable parameters d

6

and r, node i repeats r times the following: pick d incident edges {i, k} uniformly at random,
and select the least loaded one. Once this is done, node j picks the least loaded edge among
the r edges selected by i.

Let Ii,j be the node selected to route the message from sender i to receiver j. Messages
from i to j will be routed along the path Pi,j = (i, Ii,j , j). For h ≥ 0, let bi,h(j) be the number
of edges {i, k} of load at least h after deciding the intermediate nodes Ii,1, . . . , Ii,j of the first j
receivers for sender i. We define the following quantities:

x =

⌈
e5+c

p2

⌉
and β =

np2

e5+c
.

Since bi,x(n) ≤ n/x, it follows from the above that bi,x(n) ≤ β. Now, let

`(j) = |{j′ ≤ j : Ii,j′ = Ii,j}|.

We define the random variables Zi,j where

Zi,j =

{
1 if `(j) ≥ x+ 1
0 otherwise.

Hence Zi,j = 1 is the bad event that the edge between node i and the intermediate node Ii,j
used to route from i to j is heavily loaded by i. Conditioned on the fact that E holds (cf. Claim
4), we get that

Pr[Zi,j = 1] ≤ r
(

β

np2/e

)d
.

We let q be the right hand side of the above equation. Let us now consider Zi =
∑n

j=1 Zi,j .
Observe that Zi,j is a function of Ii,1, . . . , Ii,j−1. Therefore, by Lemma 1 we get that

Pr[Zi ≥ k] ≤ Pr[B(n, q) ≥ k].

So, in particular, Pr[Zi ≥ 1] ≤ Pr[B(n, q) ≥ 1]. We now set d = lnn, and r ≤ n (a suitable r
will be specified thereafter). Thanks to this choice of d and r, we have q ≤ 1

n3+c , and therefore

Pr[Zi ≥ 1] ≤ Pr[B(n,
1

n3+c
) ≥ 1] ≤ E[B(n,

1

n3+c
)] ≤ 1

n2+c
.

Let Z =
∑n

i=1 Zi. By union bound, we get Pr[Z ≥ 1] ≤ 1
n1+c .

Using a similar analysis, from the perspective of the receiver, and defining the corresponding
random variables Z ′i,j capturing the load of the edges incident to a receiver j, and Z ′j =

∑n
i=1 Z

′
i,j ,

we get
Pr[Z ′j ≥ 1] ≤ Pr[B(n, q′) ≥ 1]

where

q′ =

(
1−

(
1− eβ

np2

)d)r
.

We get q′ ≤ 1
n3+c by setting d = lnn and r = (c + 3) nε lnn for ε = − ln(1− 1

e4+c). By this
setting of d and r, we get that

Pr[Z ′j ≥ 1] ≤ Pr[B(n,
1

n3+c
) ≥ 1] ≤ E[B(n,

1

n3+c
)] ≤ 1

n2+c
.

Let Z ′ =
∑n

j=1 Z
′
j . By union bound, we get Pr[Z ′ ≥ 1] ≤ 1

n1+c .

7

Therefore, altogether, we get that

Pr[Z = 0 and Z ′ = 0 | E] · Pr[E] ≥ (1− 1

n1+c
)3 ≥ 1− 3

n1+c
.

In other words, w.h.p., the load of all edges is no more than x = O(1/p2). On the other hand,
with a similar argument as for proving that the degree is large, we have that, w.h.p., the degree
of all nodes is at most enp, and therefore the load of an edge does not exceed enp. �

4 MST Construction in Core-Periphery Networks

In [1], a randomized algorithm for Minimum Spanning Tree (MST) construction is presented.
It runs in O(log2 n) rounds with high probability. We improve this result by describing a
deterministic algorithm for MST construction that runs in just O(log n) rounds. Recall that,
for the MST construction task, every node is given as input the weight w(e) of each of its
incident edges e. These weights are supposed to be of values polynomial in the size n of the
network, and thus each weight can be stored on O(log n) bits. The output of every node is a set
of incident edges, such that the collection of all outputs forms an MST of the network. Without
loss of generality, all weights are supposed to be different (since, otherwise, it is sufficient to
add to each edge the identities of the extremities of that edge).

Theorem 3 The MST construction task can be solved in O(log n) rounds in core-periphery
networks under the CONGEST model.

Proof. As usually in the distributed setting, the general idea of the algorithm is based on
the sequential Bor̊uvka’s algorithm for MST construction, consisting in merging subtrees called
fragments. Recall that, in Bor̊uvka’s algorithm, there are initially n fragments, where each node
alone forms a fragment. Each fragment has an ID. Initially, the identity of each fragment is
the ID of the single node in the fragment. Then the algorithm proceeds in at most dlog2 ne
phases. At each phase, each fragment F computes the edge eF of minimum weight incident to
fragment F , and adds it to the MST. Fragments connected by such an edge merge, and a new
phase begins. This procedure is repeated until there is only one fragment, which is the desired
MST.

We first present a (deterministic) distributed algorithm running in O(log2 n) rounds in core-
periphery networks. This algorithm is composed of at most dlog2 ne phases, where each phase
requires O(log n) rounds. Then, we show how to actually perform each phase in O(1) rounds,
obtaining the desired O(log n)-round algorithm. Recall that a core-periphery network satisfies
the three axioms listed in Section 1 where C and P denote the sets of nodes in the core and in
the periphery, respectively.

The algorithm starts by an initialization phase, where each node in the periphery looks for
a node in the core, which will be its representative. By Axiom 3 all nodes in the periphery can
concurrently send messages to the core so that each message will be received by at least one node
in the core after O(1) rounds. So, each node in the periphery sends a request for a representative
by sending its own ID to the core. Every node in the periphery then waits for an acknowledgment
from nodes in the core that accepted its request. These acknowledgements follow the same route
as the corresponding requests, backward. Hence, all acknowledgments are also received after
O(1) rounds. Every node takes as representative the core node whose acknowledgment reaches
that node first. If a node receives several acknowledgments simultaneously, then it selects the
one with the smallest ID. By Axiom 1, each node in the core can be the representative of at

8

most O(|C|) nodes in the periphery because its degree is at most O(|C|), and thus it can receive
at most O(|C|) messages in O(1) rounds. Every node in the core is its own representative.

We assume that the nodes in the core are sorted according to their IDs (this operation can
be done in O(1) rounds using all-to-all and Axiom 2). For every node in the core, we denote by
succ(u) and pred(u) the successor and the predecessor of u in this order, respectively.

We heavily used the protocols in [18]. Note that the routing protocol in [18] requires that
each node is the the source and destination of at most n messages. However, it can be trivially
adapted to be applied with O(n) messages, still requiring O(1) rounds. Similarly, the sorting
protocol in [18] requires that each node receives at most n keys, but, again, it can be trivially
modified for allowing each node to receive O(n) keys, still requiring O(1) rounds.

We now explain how every phase of Bor̊uvka’s algorithm is performed.

1. Every node sends the ID of its fragment to all its neighbors.

2. Let r(v) ∈ C and id(F) be the representative and the ID of the fragment F of node
v, respectively. We denote by eF (v) the edge of minimum weight incident to v and
connecting v to a node not in its fragment F . Each node v in the periphery sends
(eF (v), w(eF (v)), id(F), id(F ′)) to r(v), where the tail of eF (v) belongs to F , and its head
belongs to fragment F ′ 6= F . Observe that each node in the core receives O(|C|) such
messages.

3. Every node in the core, upon reception of 4-tuple (eF (v), w(eF (v)), id(F), id(F ′)) from the
nodes that it represents (including itself), selects the ones with minimum weight for each
fragment F . We denote by S1 the set of the selected edges by all nodes in the core. Note
that |S1| = O(|C|2).

4. The algorithm assigns a leader to each fragment. The leaders are core nodes chosen in
such a way that the fragments are equally distributed among leaders. Let

x = d|S1|/|C|e.

Note that x = O(|C|). Given a fragment F , its leader is

`(F) = 1 +

⌊
|{(u, v) ∈ S1 : id(Fu) < id(F)}|

x

⌋
where Fu is the fragment of u. Note that 1 ≤ `(F) ≤ |C|. For each fragment F , all edges
incident to F in S1 are sent to `(F) by its representative holding such edges — we shall
explain hereafter how this is implemented in core-periphery networks. In this way each
leader can select the edge eF of minimum weight incident to fragment F . Let S2 be the
set of all edges eF , where F is a fragment.

5. The algorithm then aims at merging the fragments. We call merge tree a tree whose nodes
are fragments F , and whose edges are the edges eF connecting these fragments. Note that,
in a merge tree, there are two adjacent fragments F and F ′ connected by two possibly
distinct edges eF and eF ′ . The fragment with smallest ID that is extremity of such an
edge is the root of the merge tree. The algorithm proceeds so that each leader `(F) of a
fragment F in the merge tree becomes aware of the root of the tree. The ID of this root
will become the ID of the fragment resulting from merging all the fragments in the merge
tree. It is possible to find the root of a tree of height h in O(log h) steps using pointer
jumping — we shall explain hereafter how this is precisely implemented in core-periphery
networks.

9

6. By the previous step, for every fragment F , its leader `(F) knows the ID of the merge
tree it belongs to. Moreover, for each edge (u, v) that was received by a leader from the
representative r(u) in step 4, the leader saved id(r(u)). This allows leaders to notify the
right representatives of the ID of the root of the merge tree.

7. Finally, the ID of every merged fragment is sent to every node v of the periphery from its
representative r(v) in the core.

It remains to explain how steps 4 and 5 are actually performed.

Step 4 in more details. First, observe that the parameter x = d|S1|/|C|e can be computed
at each node of the core, as performing all-to-all communication in the core allows each core
node to compute |S1|. Now, we show how to distribute the fragments among the leaders such
that leader `(F) becomes aware of the edges eF (v) ∈ S1 incident to F .

The edges (u, v) ∈ S1 are sorted according to the ID of the fragment Fu its tail belongs to,
and are then split into groups of x edges. Again, this operation can be done in O(1) rounds
using the sorting protocol in [18] because x = O(|C|). The kth group is assigned to the kth
node of the core.

Let us consider a core node u, and let F(u) be the set of fragments F such that `(F) = u. Let
us denote by idmax(u) (resp., idmin(u)) the maximum ID (resp., minimum ID) of the fragments
F ∈ F(u). Having sorted the set S1 guaranties that the leader u receives all the edges assigned
to it, except perhaps some edges starting from fragment idmax(u) that could have been delivered
to succ(u). However, there are at most x− 1 such edges, since the representatives kept at most
one edge per fragment. So, every core node u can send idmax(u) to succ(u), in order to let
that node know that the leader of the fragment with ID equal to idmax(u) should be u, and
not succ(u). Since each node u has then at most x − 1 messages to transmit to pred(u), we
can transmit these messages using the routing protocol in [18]. Now each leader u has all the
outgoing edges of each fragment F with `(F) = u. Thus, u can compute eF for each of these
fragments. Finally, each node u in the core broadcasts the pair (idmin(u), idmax(u)) in the core
so that every node in C learns the leader of each fragment.

Note that, while sorting and routing, every node keeps track of the ID of the representative
nodes which originally received every edge that is manipulated by that node (this is needed in
step 6).

Step 5 in more details. We show how to perform the first step of pointer jumping. Recall
that, for every fragment F , the leader `(F) knows eF . This latter edge is the one leading toward
the root of the merge tree. Assume that eF = (u, v), with u ∈ F and v ∈ F ′. The objective for
the leader `(F) is to learn to which fragment F ′′ is pointing the edge eF ′ = (u′, v′) with u ∈ F ′
and v′ ∈ F ′′. In other words, if p denotes the parent relation in a merge tree, the leader `(F)
of fragment F wants to learn the ID of p(p(F)). The bad news is that `(F) cannot directly
ask id(p(p(F))) to `(p(F)) because this could create a bottleneck at `(p(F)). Nevertheless this
issue can be overcame as follows.

First, the edges in S2 are sorted according to the IDs of the fragment of their heads, and
grouped into groups whose heads belong to the same fragment. In this way, only one request is
sent for each group (to the leader of the corresponding fragment). Since x = d|S1|/|C|e, we have
x = O(|C|), and thus the number of requests that each leader has to make is at most O(|C|).

Second, every leader does not receive more than O(|C|) requests. Indeed, let qu,v be the
number of different fragments for which a node u in the core has to send a request to leader v.
Let Fi1 , Fi2 , . . . , Fiqu,v be these fragments, with `(Fi1) = `(Fi2) = · · · = `(Fiqu,v) = v, and

10

i1 < i2 < · · · < iqu,v . Recall that the edges in S2 are sorted according to the IDs of the fragment
of their heads. Thus, if qu,v > 1 then the fragments Fi2 , . . . , Fiqu,v do not appear in any list
of fragments assigned to nodes with identity smaller than id(u). Therefore, leader v receives
at least

∑
u∈C(qu,v − 1) requests for different fragments. On the other hand, every core node

v is the leader of at most x fragments. Therefore
∑

u∈C(qu,v − 1) ≤ x. Hence the number of
requests received by v is

∑
u∈C qu,v = O(|C|).

These two facts, allow the routing protocol in [18] to be used, for sending the requests to the
leaders, and for receiving back their answers. Once this is done, every node u sends id(p(p(F)))
to `(F), for every F ∈ F(u) in a constant number of rounds, again using [18]. It follows that
every leader u can learn the ID of p(p(F)) for every F ∈ F(u) in a constant number of rounds.

Time analysis. The initialization phase can be performed in O(1) rounds thanks to Axiom 3.
Step 1 trivially requires O(1) rounds. Step 2 also requires O(1) rounds thanks to Axiom 3. Step
3 is executed locally by each node, thus it does not require communication. Step 4 can be
executed in O(1) rounds using the sorting protocol in [18] because x = O(|C|). Step 6 can also
be performed in O(1) rounds using the routing protocol in [18] because each leader handles
O(|C|) edges (for which it has to send a fragment ID), and each representative has to receive
O(|C|) messages (one for each edge it has to receive a new fragment ID). The last step is the
inverse of step 2, and thus can still be executed in O(1) rounds. Step 5 however requires O(log n)
rounds because the merge tree might be of height Ω(nε) for some ε > 0. Since the number of
phases is also O(log n), the total number of rounds of this algorithm is O(log2 n).

A faster algorithm. Now, we describe how to modify the above algorithm so that it uses
only O(1) rounds for each phase, hence O(log n) rounds in total. Since the only step that
requires a non constant number of rounds is Step 5, we show how to perform that step in O(1)
rounds.

The idea is to use a technique introduced first in [20], and also used in Avin et al. [1], called
amortized pointer jumping. The reduction of long chains of pointers is deferred to later phases
of Bor̊uvka’s algorithm, and only a constant number of pointer jumps are performed at each
phase. This technique exploits the fact that, if a chain is long, it must contain many fragments.
As a consequence, when pointer jumping completes, the resulting fragment is quite large, and
other nodes involved in small fragments may continue building the MST in parallel, without
waiting for large fragments to be constructed.

We show how to do a constant number of pointer jumping steps, then freezing the procedure,
and resuming it later in the next phase of Bor̊uvka’s algorithm. At each step of pointer jumping,
every leader u can know, for every F ∈ F(u), if the root of the merge tree has been reached.
Suppose that the root has not been reached by u after a constant number of pointer jumping
(i.e., the leader does not know yet the new ID of the merged fragment), and that u is currently
pointing at fragment F ′. In the following, node u adds a flag in its messages, which specifies
that the fragment has not been resolved yet, and that it stopped at F ′. This flag will be
propagated to all nodes that proposed edges that start from unresolved fragments. At the next
phase of Bor̊uvka’s algorithm, these nodes will propose again the same edges, by specifying also
F ′. Fragment F ′ will be used as if it was the destination fragment of the edge. In this way,
for every fragment F in a merge tree whose merging has not yet been performed, the same
edge eF as before will be chosen, and other steps of pointer jumping will be performed. This
insures that nodes belonging to fragments in such merge trees do not propose new edges, thus
emulating a full execution of pointer jumping.

After having reduced the number of rounds for performing step 5 from O(log n) to O(1),
amortized, we get that the resulting algorithm just requires O(log n) rounds to construct a

11

MST. �

5 Conclusion

We have shown how to emulate the clique by a random graph in Gn,p in O(min{ 1
p2
, np}) rounds,

w.h.p. Hence, on dense random graphs (i.e., p = Ω(1)), our simulation performs in just a
multiplicative constant factor away from the optimal, and, on sparse graphs (i.e., p '

√
log n/n),

it performs just a log n factor away from optimal. However, in general, whenever p � 1
3√n , it

performs in O(1
p2

) rounds, which is a factor O(1p) away from the trivial lower bound Ω(1p). An

intriguing question is whether the n-node clique can be simulated by Gn,p in just O(1p) rounds.
Our deterministic MST algorithm for core-periphery networks performs in O(log n) rounds,

improving the previously known (randomized) algorithm by a factor Θ(log n). Recent advances
in the congested clique model demonstrate that ultra fast MST algorithms exist for this later
model, namely, a recent O(log∗ n)-round randomized algorithm [12], and a O(log log n)-round
deterministic algorithm [19]. Another intriguing question is whether such ultra fast algorithms
exist for core-periphery networks.

References

[1] Chen Avin, Michael Borokhovich, Zvi Lotker, and David Peleg. Distributed computing
on core-periphery networks: Axiom-based design. In 41st International Colloquium on
Automata, Languages, and Programming (ICALP), pages 399–410, 2014.

[2] Andrei Z. Broder, Alan M. Frieze, and Eli Upfal. Existence and construction of edge-
disjoint paths on expander graphs. SIAM J. Comput., 23(5):976–989, 1994.

[3] Keren Censor-Hillel, Petteri Kaski, Janne H. Korhonen, Christoph Lenzen, Ami Paz, and
Jukka Suomela. Algebraic methods in the congested clique. In ACM Symposium on Prin-
ciples of Distributed Computing (PODC), pages 143–152, 2015.

[4] Keren Censor-Hillel and Tariq Toukan. On fast and robust information spreading in the
vertex-congest model. In 22nd International Colloquium on Structural Information and
Communication Complexity (SIROCCO), pages 270–284, 2015.

[5] Andrew Drucker, Fabian Kuhn, and Rotem Oshman. On the power of the congested clique
model. In ACM Symposium on Principles of Distributed Computing (PODC), pages 367–
376, 2014.

[6] Michael Elkin. A faster distributed protocol for constructing a minimum spanning tree. In
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 359–368, 2004.

[7] Uriel Feige, David Peleg, Prabhakar Raghavan, and Eli Upfal. Randomized broadcast in
networks. Random Struct. Algorithms, 1(4):447–460, 1990.

[8] Alan M. Frieze. Disjoint paths in expander graphs via random walks: A short survey.
In Second International Conference on Randomization and Approximation Techniques in
Computer Science (RANDOM), pages 1–14, 1998.

[9] Alan M. Frieze. Edge-disjoint paths in expander graphs. In 11th ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 717–725, 2000.

12

[10] Robert G. Gallager, Pierre A. Humblet, and Philip M. Spira. A distributed algorithm for
minimum-weight spanning trees. ACM Trans. Program. Lang. Syst., 5(1):66–77, 1983.

[11] Juan A. Garay, Shay Kutten, and David Peleg. A sublinear time distributed algorithm for
minimum-weight spanning trees. SIAM J. Comput., 27(1):302–316, 1998.

[12] Mohsen Ghaffari and Merav Parter. Mst in log-star rounds of congested clique. In 35th
ACM Symposium on Principles of Distributed Computing (PODC), 2016.

[13] James W. Hegeman, Gopal Pandurangan, Sriram V. Pemmaraju, Vivek B. Sardeshmukh,
and Michele Scquizzato. Toward optimal bounds in the congested clique: Graph connec-
tivity and MST. In ACM Symposium on Principles of Distributed Computing (PODC),
pages 91–100, 2015.

[14] James W. Hegeman and Sriram V. Pemmaraju. Lessons from the congested clique applied
to MapReduce. Theor. Comput. Sci., 608:268–281, 2015.

[15] James W. Hegeman, Sriram V. Pemmaraju, and Vivek Sardeshmukh. Near-constant-
time distributed algorithms on a congested clique. In 28th Int. Symposium on Distributed
Computing (DISC), pages 514–530, 2014.

[16] Shay Kutten and David Peleg. Fast distributed construction of small k -dominating sets
and applications. J. Algorithms, 28(1):40–66, 1998.

[17] Tom Leighton, Satish Rao, and Aravind Srinivasan. Multicommodity flow and circuit
switching. In 31st Hawaii International Conference on System Sciences, pages 459–465,
1998.

[18] Christoph Lenzen. Optimal deterministic routing and sorting on the congested clique. In
ACM Symposium on Principles of Distributed Computing (PODC), pages 42–50, 2013.

[19] Zvi Lotker, Boaz Patt-Shamir, Elan Pavlov, and David Peleg. Minimum-weight spanning
tree construction in O(log log n) communication rounds. SIAM J. Comput., 35(1):120–131,
2005.

[20] Zvi Lotker, Boaz Patt-Shamir, and David Peleg. Distributed MST for constant diameter
graphs. In 20th ACM Symposium on Principles of Distributed Computing (PODC), pages
63–71, 2001.

[21] Michael Mitzenmacher and Eli Upfal. Probability and computing - randomized algorithms
and probabilistic analysis. Cambridge University Press, 2005.

[22] Hiroaki Ookawa and Taisuke Izumi. Filling logarithmic gaps in distributed complexity
for global problems. In 41st International Conference on Current Trends in Theory and
Practice of Computer Science (SOFSEM), volume 8939 of LNCS, pages 377–388. Springer,
2015.

[23] David Peleg and Vitaly Rubinovich. A near-tight lower bound on the time complexity of
distributed minimum-weight spanning tree construction. SIAM J. Comput., 30(5):1427–
1442, 2000.

[24] Atish Das Sarma, Stephan Holzer, Liah Kor, Amos Korman, Danupon Nanongkai, Gopal
Pandurangan, David Peleg, and Roger Wattenhofer. Distributed verification and hardness
of distributed approximation. In 43rd ACM Symposium on Theory of Computing (STOC),
pages 363–372, 2011.

13

