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Abstract

Alice wants to join a new social network, and influence its members to adopt a new product or idea.
Each person v in the network has a certain threshold t(v) for activation, i.e adoption of the product or
idea. If v has at least t(v) activated neighbors, then v will also become activated. If Alice wants to activate
the entire social network, whom should she befriend? We study the problem of finding the minimum
number of links that Alice should form to people in the network, in order to activate the entire social
network. This Minimum Links Problem has applications in viral marketing and the study of epidemics.
We show that the solution can be quite different from the related and widely studied Target Set Selection
problem. We prove that the Minimum Links problem is NP-complete, in fact it is hard to approximate
to within an ε lnn factor for some constant ε, even for graphs with degree 3 and with threshold at most 2.
In contrast, we give linear time algorithms to solve the problem for trees, cycles, and cliques, and give
precise bounds on the number of links needed.
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1 Introduction

The increasing popularity and proliferation of large online social networks, together with the availability
of enormous amounts of data about customer bases, has contributed to the rise of viral marketing as an
effective strategy in promoting new products or ideas. This strategy relies on the insight that once a certain
fraction of a social network adopts a product, a larger cascade of further adoptions is predictable due to the
word-of-mouth network effect [14, 22, 3]. Inspired by social networks and viral marketing, Domingos and
Richardson [11, 27] were the first to raise the following important algorithmic problem in the context of
social network analysis: If a company can turn a subset of customers in a given network into early adopters,
and the goal is to trigger a large cascade of further adoptions, which set of customers should they target?

We use the well-known threshold model to study the influence diffusion process in social networks
from an algorithmic perspective. The social network is modelled by a node-weighted graph G = (V,E, t)
with V (G) representing individuals in the social network, E(G) denoting the social connections, and t an
integer-valued threshold function. Starting with a target set, that is, a subset S ⊆ V of nodes in the graph,
that are activated by some external incentive, influence propagates deterministically in discrete time steps,
and activates nodes. For any unactivated node v, if the number of its activated neighbors at time step t−1
is at least t(v), then node v will be activated in step t. A node once activated stays activated. It is easy to
see that if S is non-empty, then the process terminates after at most |V |− 1 steps. We call the set of nodes
that are activated when the process terminates as the activated set. The problem proposed by Domingo and
Richardson [11, 27] can now be formulated as follows: Given a social network G = (V,E, t), and an integer
k, find a subset S ⊆ V of size k so that the resulting activated set is as large as possible. In the context of
viral marketing, the parameter k corresponds to the budget, and S is a target set that maximizes the size of
the activated set. One question of interest is to find the cheapest way to activate the entire network, when
possible. The optimization problem that results has been called the Target Set Selection Problem, and has
been widely studied (see for eg. [4, 1, 25]): the goal is to find a minimum-sized set S ⊆V that activates the
entire network (if such a set exists). In a certain sense, the elements of this minimum target set S are the
most influential people in the network; if they are activated, the entire network will eventually be activated.

There are, however, two hidden flaws in the formulation of the target set problem. First, the nodes in the
target set are assumed to be activated immediately by external incentives, regardless of their own thresholds
of activation. This is not a realistic assumption; in the context of viral marketing, it is possible, perhaps
even likely, that highly influential nodes have high thresholds, and cannot be activated by external incentives
alone. Secondly, there is no possibility of giving partial external incentives; indeed the target set is activated
only by external incentives, and the remaining nodes only by the internal network effect.

In this paper, we address the flaws mentioned above. We study a related but different problem. Suppose
Alice wants to join a new social network, whom should she befriend if her goal is to influence the entire
social network? In other words, to whom should Alice create links, so that she can activate the entire
network? If Alice creates a link to a node v, the threshold of v is only effectively reduced by one, and so v in
turn is activated only if its threshold is one. We call our problem the Minimum Links problem (Min-Links).

The Min-Links problem provides a new way to model a viral marketing strategy, which addresses the
flaws described in the target set problem formulation. Indeed, Alice can represent the external initiator of a
viral marketing strategy. The links added from the external node correspond to the external incentive given
to the endpoints of these links. The nodes that are the endpoints of these new links may not be immediately
completely activated, but their thresholds are effectively reduced; this corresponds to their receiving partial
incentives. One way of seeing this is that every individual to whom we link is given a $10 coupon; for some
people this may be enough for them to buy the product, for others, it reduces their resistance to buying it.
Individuals with high thresholds cannot be activated only by external incentives. The Min-Links problem also
has important applications in epidemiology or the spread of epidemics: in the spread of a new disease, where
an infected person arrives from outside a community, the Min-Links problem corresponds to identifying the
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smallest set of people such that if the infected external person has contact with this set, the entire community
could potentially be infected.

Observe that the solution to the Min-Links problem can be quite different from the solution to the Target
Set Selection problem for a given network. For example, consider a star network, where the leaves all have
threshold 1, while the central node has degree n−1 and has threshold n. The optimal target set is the central
node, while the only solution to the Min-Links problem is to create links to all nodes in the network. Thus, a
solution to the Min-Links problem can be arbitrarily larger than one to the Target Set Selection problem for
the same social network. However, any solution to the Min-Links problem is clearly also a feasible solution
to the Target Set Selection problem.

1.1 Our Results

We prove that the Min-Links problem is NP-hard, and is in fact, hard to approximate to within an ε logn
factor for some ε < 1. In light of the hardness results, we study the complexity of the problem for social
networks that can be represented as trees, cycles, and cliques. In each case, we give a necessary and sufficient
condition for the feasibility of the Min-Links problem, based on the structural properties and an observation
of the threshold function. We then give O(|V |) algorithms to solve the Min-Links problem for all the studied
graph topologies. Finally, we give exact bounds on the number of links needed to activate the entire network
for all the above specific topologies, as a function of the threshold values.

1.2 Related work

The problem of identifying the most influential nodes in a social network has received a tremendous amount
of attention [15, 18, 23, 17, 5, 16, 2, 12]. The algorithmic question of choosing the target set of size k
that activates the most number of nodes in the context of viral marketing was first posed by Domingos and
Richardson [11]. Kempe et al [20] started the study of this problem as a discrete optimization problem,
and studied it in both the probabilistic independent cascade model and the threshold model of the influence
diffusion process. They showed the NP-hardness of the problem in both models, and showed that a natural
greedy strategy has a (1−1/e− ε)-approximation guarantee in both models; these results were generalized
to a more general cascade model in [21].

In the Target Set Selection problem, the size of the target set is not specified in advance, but the goal
is to activate the entire network. Chen [4] showed that it is hard to approximate the optimal Target Set to
within a polylogarithmic factor, even when all nodes have majority thresholds, or have constant degrees and
thresholds two. A polynomial-time algorithm for trees was given in the same paper. Ben-Zwi et al. [1]
generalized the result on trees to show that target set selection can be solved in nO(w) time where w is the
treewidth of the input graph. The effect of parameters such as diameter, vertex cover number etc. of the
input graph on the complexity of the problem are studied in [25]. The Minimum Target Set has also been
studied from the point of view of the spread of disease or epidemics. For eg., in [19], the case when all
nodes have a threshold k is studied; the authors showed that the problem is NP-complete for fixed k ≥ 3.

Influence diffusion under time window constraints were studied in [13]. Maximizing the number of
nodes activated within a specified number of rounds has also been studied [9, 24]. The problem of dynamos
or dynamic monopolies in graphs (eg. [26]) is essentially the target set problem restricted to the case when
every node’s threshold is half its degree.

The paper closest to our work is [8], in which Demaine et al introduce a model to partially incentivize
nodes to maximize the spread of influence. Our work differs from theirs in several ways. First, they study
the maximization of influence given a fixed budget, while we study in a sense the budget (number of links)
needed to activate the entire network. Second, they consider thresholds chosen uniformly at random, while
we study arbitrary thresholds. Finally, they allow arbitrary fractional influence to be applied externally on
any node, while in our model, every node that receives a link has its threshold reduced by the same amount.
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Figure 1: Node µ is the external influencer and is assumed to be activated. Links in the link set are shown
with dashed edges. The given link set activates the entire network and is an optimal pervading link set.

2 Notation and preliminaries.

Given a social network represented by an undirected graph G= (V,E, t), we introduce a set of external nodes
U that are assumed to be already activated. We assume that all edges have unit weight; this is generally called
the uniform weight assumption, and has previously been considered in many papers [4, 13, 6, 7]. A link set
for (G,U) is a set S of links between nodes in U and nodes in V , i.e S ⊆ {(u,v) | u ∈U ;v ∈ V}. For a link
set S, we define E(S) = {v ∈V | ∃(u,v) ∈ S}, that is, E(S) is the set of V -endpoints of links in S. For a node
v, define r(v) to be the number of links in S for which v is an endpoint. Since the set of external nodes U is
already activated, observe that adding the link set S to G is equivalent to reducing the threshold of the node
v by r(v). In the viral marketing scenario, the link set S represents giving v a partial incentive of r(v).

Given a link set S for a graph G, we define I(G,S) to be the set of nodes in G that are eventually activated
as a result of adding the link set S, that is, by reducing the threshold of each node v∈E(S) by min{r(v), t(v)},
and then running the influence diffusion process. See Figure 1 for an illustration. Observe that in the target
set formulation, this is the same as the set of nodes activated by using U as the target set in the graph G′, the
graph obtained from G by adding the set U to the vertex set and the set S to the set of edges.

A link set S such that I(G,S) = V , that is, S activates the entire network, is called a pervading link set.
A pervading link set of minimum size is called an optimal pervading link set.

Definition 1 Minimum Links (Min-Links) problem: Given a social network G = (V,E, t), where t is the
threshold function on V , and a set of external nodes U, find an optimal pervading link set for (G,U).

In this paper, we consider the case of a single influencer, that is, U = {µ}. In this case, a link given to
a vertex v reduces its threshold by 1. Since µ must be an endpoint of each edge in the link set S, each such
edge can be uniquely specified by a vertex in V . We therefore generally omit mention of µ in the rest of
the paper. For each node v ∈ E(S), we say we give v a link, or that v receives a link. If activating X ⊆ V
activates, directly or indirectly, the set of vertices Y , we write X ∼Y (note that there may be vertices outside
Y that X activates). We write x∼Y instead of {x}∼Y . The minimum cardinality of a link set for a Min-Links
instance G is denoted ML(G).

Observe that for some graphs, a pervading link set may not exist; for example, consider a singleton node
of threshold greater than 1. The existence of a feasible solution can be verified in O(E) time by giving a
link to every node in V , and simulating the influence diffusion process. The following simple observation
stating two conditions under which no pervading link set exists, is used throughout the paper:

Observation 1 A graph G does not have a pervading link set if it has a node v such that t(v)> degree(v)+1,
or if there is no node with threshold 1.
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3 NP-hardness

In this section, we prove that the Min-Links problem is NP-hard; in fact, it is almost as hard as Set-Cover
to approximate, even if G has degree bounded by 3 and thresholds bounded by 2. Given a collection of n
sets S = {S1, . . . ,Sn} whose union is the universe U of cardinality m, with n≤ mk for some constant k, the
Set-Cover problem is to find a minimum set cover, that is, a sub-collection of minimum cardinality S ′ ⊆ S
such that

⋃
S∈S ′ S = U. The cardinality of S ′ is denoted MSC(S). We shall make use of rooted binary trees.

For such a tree T , denote the root by r(T ), and the set of leaves by L(T ).
Constructing G from S : Given a Set-Cover instance S , we describe the construction of a corre-

sponding Min-Links instance G = (V,E, t) in polynomial time, which is used for our reduction. Figure 2
illustrates our construction. For each set in S and each element in U, we introduce two binary trees
in G, and then describe how to connect these trees. For each S ∈ S , add to G a binary tree BS with |S|
leaves L(BS) = {bS,u1 , . . . ,bS,u|S|}, one for each element ui ∈ S. Add another binary tree B′S with |S| leaves
L(B′S) = {b′S,u1

, . . . ,b′S,u|S|}, again one for each element ui ∈ S. Then, add an edge between r(BS) and r(B′S).
The thresholds are t(b) = 1 for every b ∈ V (BS)∪L(B′S), and t(b′) = 2 for every internal node b′ of

V (B′S), that is for every b′ ∈V (B′S)\L(B′S). Note that L(B′S)∼V (B′S)∼V (BS).
Then for each element u ∈ U, add a binary tree Cu with |S(u)| leaves, where S(u) = {S ∈ S : u ∈ S}

consists of the sets containing u. Denote L(Cu) = {cu,S1 , . . . ,cu,S|S(u)|}, each leaf corresponding to a set Si

of S(u). Next, add yet another binary tree C′u with |S(u)| leaves {c′u,S1
, . . . ,c′u,S|S(u)|}, again one for each

Si ∈ S(u). Add an edge between r(Cu) and r(C′u). Every node c ∈V (Cu)∪V (C′u) has t(c) = 1.
We now define a gadget called a heavy link. Let x,y be two non-adjacent nodes with t(x) = t(y) = 1.

Adding an x− y heavy link consists of adding two nodes z1,z2 that are neighbors of x, then adding another
node z3 that is a neighbor of z1,z2 and y. We set the thresholds t(z1) = t(z2) = 1 and t(z3) = 2. Note that the
heavy link makes x∼ y but not necessarily y∼ x (thus adding an x− y heavy link is different from adding a
y− x heavy link). Also notice that this operation increases the degree of x by 2 and of y by 1, and that z1,z2
and z3 have degree bounded by 3.

To finish the construction, for every set S ∈ S and each element u ∈ S, add a bS,u− cu,S heavy link, and
a c′u,S− b′S,u heavy link. Denote by HS the set of nodes added to G by incorporating the heavy links to the
BS leaves, and by H ′u the set of heavy link nodes added to the C′u leaves. It is not hard to see that G can be
constructed in polynomial time. Note that for each S ∈ S , the nodes of BS are equivalent, in the sense that if
one is activated, then they all get activated. The same holds for the nodes of Cu and C′u, for every u ∈U. We
will use their roots as representatives, meaning that we will implicitly use the fact that r(BS) ∼ V (BS) and
r(Cu)∼V (Cu).

The proof of the following lemma is straightforward and is in the appendix:

Lemma 1 Let S be an instance of Set-Cover over universe U, with |S |= n and |U|=m, and let G=(V,E, t)
be the Min-Links instance constructed as above. Then all of the following conditions are met:

1. |V | ≤ mc for some constant c;
2. each node of G has at most 3 neighbors;
3. t(v)≤ 2 for every node v of G.

We now show that both S and its corresponding instance G have the same optimality value.

Lemma 2 MSC(S) = ML(G).

Proof. First observe that for a given set S ∈ S ,
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Figure 2: The construction of G from S consisting of S1 = {u1,u2,u3} and S2 = {u1,u3}. White nodes have
threshold 1, whereas black nodes have threshold 2.

⋃
u∈S

r(Cu)∼ L(B′S)∼V (B′S)∼V (BS)

which implies that ⋃
u∈U

r(Cu)∼
⋃
S∈S

V (B′S)∼
⋃
S∈S

V (BS)

and it follows that
⋃

u∈U r(Cu)∼V .
To see that MSC(S)≥ML(G), if S ′ ⊆ S is a minimum set cover, then giving links to V ′ =

⋃
S∈S ′ r(BS)

suffices to activate G since V ′ ∼
⋃

u∈U r(Cu)∼V . Thus MSC(S)≥ML(G).
It remains to show that MSC(S)≤ML(G). Let B = {r(BS) : S ∈ S}. Let V ′ ⊆V be the set of endpoints

of E(Ŝ) for an optimal pervading link set Ŝ such that |V ′∩B| is maximized among all possible choices. We
divide this section of the proof into two claims.

Claim 1 V ′ ⊆ B.

Proof. First observe that we may assume that if x ∈ V ′ \B, then there is no set S such that r(BS) ∼ x (for
otherwise, we can replace x by r(BS) in V ′, contradicting our choice of V ′). But no such x can exist. If
x ∈V (Cu) for some u, then r(BS)∼ x for any set S containing u. If x belongs to a bS,u−cu,S heavy link, then
r(BS)∼ x. If x belongs to a c′u,S−b′S,u heavy link, then again r(BS)∼ r(Cu)∼ x. Finally if x ∈V (B′S), then
r(BS)∼

⋃
u∈S r(Cu)∼ L(B′S)∼ x. We conclude that V ′ has only nodes from B.
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Claim 2 S ′ = {S ∈ S : r(BS) ∈V ′} is a set cover.

Proof. Suppose the claim is false, and let w ∈ U be an element not covered by S ′. Recall that S(w) =
{S1, . . . ,S|S(w)|} is the collection of sets containing w. Let Si ∈ S(w). Then in B′Si

, there is a leaf b′Si,w. Let
PSi be the set of nodes lying on the unique b′Si,w− r(B′Si

) shortest path in B′Si
(inclusively). Define W as the

node set that contains the Cw and C′w nodes along with the heavy link nodes appended to L(C′w), plus for
each Si ∈ S(w), the PSi nodes and the BSi nodes with the heavy link nodes appended to L(BSi). Formally,

W =V (Cw)∪V (C′w)∪H ′w∪

 ⋃
Si∈S(w)

(V (BSi)∪HSi ∪PSi)


We show that no node of W gets activated by V ′, contradicting the assertion that Ŝ is a pervading link

set. Suppose instead that some W nodes do get activated. Let z be the first node of W activated by the
propagation process (or if multiple nodes of W get simultneously activated first, pick z arbitrarily among
them). Then, since V ′∩W = /0, z must have t(z) neighbors outside of W that were activated and influenced
it. Observe that the only nodes of W that have neighbors outside of W belong to either HSi or PSi for some
Si ∈ S(w). If z∈HSi , then the only heavy link node with neighbors outside of W is the threshold 2 node. But
then, z has only one neighbor outside W (namely a cu,Si node for some u), which is not enough to activate
z. Thus z /∈ HSi . If z ∈ PSi , then z 6= b′Si,w since b′Si,w receives no influence from outside of W : it has two
neighbors, one is in PSi and the other is in the b′Si,w− c′w,Si

heavy link, both of which are in W . If instead z is
an interior node of the PSi path, then z has two neighbors in W (by the definition of a path). But t(z) = 2 and
z has only three neighbors, i.e. only one outside of W , and so z cannot be activated only by influence from
outside W . The last possible case is z = r(B′Si

). But again, z has two neighbors in W : one is in PSi and the
other is r(BSi), and the same argument applies. We conclude that z, and hence w, cannot exist, and that S′ is
a set cover.

Since V ′ yields a set cover S of size ML(G), we deduce that MSC(S)≤ML(G).

We can now state the main result of this section.

Theorem 1 The decision version of Min-Links is NP-complete, even when restricted to instances with maxi-
mum degree 3 and maximum threshold 2. Moreover, there exists a constant ε > 0 such that the optimization
version of Min-Links, under the same restrictions, is NP-hard to approximate within a ε lnn factor, where n
is the number of nodes of the given graph.

Proof. NP-completeness follows directly from Lemma 2, and observing that Min-Links is in NP, as it is
easy to check that a given set V ′ is a pervading link set (because propagation must finish in a polynomial
number of steps). As for the inapproximability result, let S be an instance of set cover over universe U,
|S | = n and |U| = m, and let n′ be the number of nodes of G constructed from S as described above, with
n′ ≤ mc (c is the constant from Lemma 1). Dinur and Steurer showed that it is NP-hard to approximate
set cover within a d lnm factor for any 0 < d < 1 [10]. For our purposes, fix 0 < d < 1, and suppose that
some approximation algorithm A always finds a pervading link set of size at most APP≤ d

c ln(n′) ·ML(G).
Because ML(G) = MSC(S), we have APP≥MSC(S), and in the other direction,

APP≤ d
c

ln(n′) ·ML(G)≤ d
c

ln(mc) ·ML(G) = d ln(m) ·MSC(S)

and hence A can approximate Set-Cover to within a factor d ln(m) using the aforementioned reduction.
Therefore, for ε = d

c , it is hard to approximate the Min-Links problem within a ε ln(n′) factor.
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4 Trees

In contrast to the NP-completeness of the Min-Links problem shown in the previous section, we now show
that there is a linear time algorithm to solve the problem in trees. We start with a necessary and sufficient
condition for a tree T to have a valid pervading link set.

Proposition 1 Let T be a tree and let v be a leaf in T . Let T ′ = T −{v} and T ′′ be the same as T ′ except
that the threshold of w, the neighbor of v in T , is reduced by 1. Then T has a pervading link set if and only
if (a) either t(v) = 1 and T ′′ has a pervading link set or (b) t(v) = 2 and T ′ has a pervading link set.

We now prove a critical lemma that shows that for any node in the tree, there is an optimal solution that
gives a link to that node.

Lemma 3 Let T be a tree with n nodes that has a pervading link set, and let v be a node in T . Then there
exists an optimal solution for Min-Links(T ) in which v gets a link.

Proof. We prove the lemma by induction on the number of nodes n in the tree. Clearly it is true if n = 1.
Suppose n > 1, and let S be an optimal pervading link set for T . If v gets a link, we are done. If not, v must
have a neighbor w that is activated before v, and that contributes to the activation of v. Let T1 and T2 be the
two trees created by removing the edge between v and w, with T1 containing w, and let S1 (respectively S2)
be the links of S with an endpoint in T1 (respectively T2). Since T is a tree, and v is activated after w by S,
none of the links in S2 can contribute to the activation of nodes in T1. It follows that S1 is a pervading link
set for T1, and in fact is optimal, as a smaller solution for T1 could be combined with S2 to yield a better
solution for T , contradicting the optimality of S. By the inductive hypothesis, there is an optimal solution
S′ for T1 that gives a link to w. Note that |S′|= |S1|, and S′∪S2 must also be an optimal solution for T . But
clearly S′′ = S′∪S2∪{(µ,v)}−{(µ,w)} also activates the entire tree T , and since |S′′| = |S|, we conclude
that S′′ is an optimal solution for T , that gives a link to v, as needed to complete the proof by induction.

The above lemma suggests a simple way to break up the Min-Links problem for a tree into subproblems
that can be solved independently, which yields a linear-time greedy algorithm.

Theorem 2 The Min-Links problem can be solved for trees in linear time.

Proof. Given a tree T , let v be an arbitrary leaf in the tree. By Lemma 3, there is an optimal solution, say
S, to the Min-Links problem for T that gives v a link. Suppose t(v) = 2, then the link to v is not enough to
activate v, and therefore v’s neighbor w must activate v. Also, v’s activation cannot help in activating any
other nodes in T . Thus S−{(µ,v)} must be an optimal solution to T ′ = T −{v}. Suppose instead that
t(v) = 1. Then the link given to v activates it immediately. Consider the induced subgraph of T containing
only nodes of threshold 1, and let C be the connected component (subtree) containing v in this subgraph.
Then clearly v ∼ C. Since S is optimal, S cannot contain any node in C except for v. Construct T ′ by
removing C from T , and subtracting 1 from the threshold of any node x who is a neighbor of a node in C.
Observe that any such node x can be a neighbor of exactly one node in C, since T is a tree. Then S−{(µ,v)}
must be an optimal solution to T ′; if instead there is a smaller-sized solution to T ′, we can add (µ,v) to that
solution to obtain a smaller solution for T than S, contradicting the optimality of S.

The above argument justifies the correctness of the following simple greedy algorithm. Initialize S = /0.
Take a leaf v in the tree. If t(v)> 2 then there is no solution by Observation 1. If t(v) = 2, then put the link
(µ,v) in S, remove v from the tree, and recursively solve the remaining tree. If t(v) = 1, then give a link to
v, remove the subtree of T that is connected to v consisting only of nodes of degree 1, reduce the thresholds
of all neighbors of the nodes in this subtree by 1, and recursively solve the resulting trees. It is easy to see
that the algorithm can be implemented in linear time.
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For the network in Figure 1, assuming that leaves in the tree are always processed in alphabetical order,
the greedy algorithm given in Theorem 2 first picks node b and adds a link to it. We then remove nodes b and
a, and reduce the threshold of d by 1. Next we pick c, give it a link, remove it from the tree, and decrement
t( f ) to 2. The next leaf that is picked and given a link is d; since d’s threshold now is 1, we remove d and e
from the tree, and reduce f ’s threshold to 1. Proceeding in this way, we arrive at the link set shown.

We now give an exact bound on ML(T ), the number of links required to activate the entire tree T , the
proof of which is in the appendix.

Theorem 3 Let T be a tree that has a pervading link set. Then ML(T ) = 1+∑v∈T (t(v)−1)

We remark that in contrast to the intuition for the optimal target set problem, where we would choose
nodes of high degree or threshold to be in the target set, in the Min-Links problem, our algorithm gives links
to leaves initially, though eventually nodes that were internal nodes in the tree may also receive links. That
is, the best nodes to befriend might be the nodes with a single connection to other nodes in the tree!

5 Cycles

In this section, we give a solution for the Min-Links problem on cycles. Let Cn = (V,E, t) be a cycle with n
nodes, V = {0,1, ...,n−1}, E = {((i, i+1) mod n) | 1 ≤ i ≤ n}, and t : t(v)→ Z+. We define Pi, j (i 6= j)
to be the sub-path of Cn consisting of all nodes in {i, . . . , j} in the clockwise direction. We may use the [i, j]
notation to denote the vertices of Pi, j. By consecutive vertices of threshold 3, we mean two vertices i, j such
that the only two vertices in Pi, j with threshold 3 are i and j.

Proposition 2 A cycle has a pervading link set if and only there is at least one node of threshold 1, every
node is of threshold at most 3, and between any two consecutive nodes of threshold 3, there is at least one
node of threshold 1.

We note that a similar condition can be stated for paths, with the additional restriction that there must be
a node of threshold 1 before (after) the first (last resp.) node of threshold 3.

We give a linear time algorithm for finding a minimum-sized link set for problem Min-Links(Cn). Essen-
tially we reduce the problem to finding an optimal solution for an appropriate path.

Theorem 4 The Min-Links problem for a cycle Cn can be solved in time Θ(n).

Proof. By Observation 1, there is no solution if there is a node with threshold 4 or more. If there exists a
node i such that t(i) = 3, then clearly i must get a link, and both of its neighbors must be activated before
it. That is, i can play no role in activating any node in Pi+1,i−1. Therefore, S = {(µ, i)}∪ S′ is an optimal
solution to Cn where S′ is an optimal solution to Pi+1,i−1. In this case, S′ can be found in linear time using
the tree algorithm of Theorem 2. If there is no node with threshold 3, a single node with threshold 2, and
the remaining nodes all have threshold 1, then by giving a link to any of the nodes with threshold 1, we can
activate the entire cycle.

It remains only to consider the case when there are no nodes of threshold 3, at least two nodes of
threshold 2, and at least one node of threshold 1. Fix an arbitrary node i of threshold 1 in Cn. We define
c(i) and cc(i) to be the first node with threshold 2 in i’s clockwise direction and counter clockwise direction
respectively, c(i) 6= cc(i) (see Figure 3). We also define Pc(i),cc(i) be the path from c(i) to cc(i) where
t(c(i)) = t(cc(i)) = 2; and P′c(i),cc(i) to be the same path as Pc(i),cc(i) except that we set t(c(i)) = t(cc(i)) = 1.

We first claim that there exists an optimal solution that gives a link to i. To see this, let S be an optimal
solution that does not give a link to node i. Since all nodes in Cn are activated by S, there must exist some
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node j ∈ [cc(i),c(i)] that gets a link. If t( j) = 1, we can take the link given to j and give it instead to node
i. Otherwise there exists j ∈ {c(i),cc(i)} such that it gets a link and is activated before i, and eventually
activates i. Again we can move the link from node j to node i, which clearly has the same effect of giving a
link to node j. Therefore, we have a new solution of the same size as S that gives a link to node i.

Consider therefore an optimal solution S that gives a link to the node i. It is not hard to see that that
S−{(µ, i)}must be an optimal solution to Min-Links(P′c(i),cc(i)), since activating i activates [cc(i)+1,c(i)−1]
and lowers the threshold of cc(i) and c(i). Again, since the Min-Links problem for a path can be solved in
Θ(n) according to Theorem 2, we can construct an optimal solution for a cycle in Θ(n) time as well.

2 21 1 1 1 1 1
icc(i) c(i)

Pc(i), cc(i)

Figure 3: A cycle with no threshold 3 vertices, illustrating the main components of the proof.

We give an exact bound on the number of links required to fully activate a cycle.

Theorem 5 Given a cycle Cn = (V,E, t) which has a pervading link set, ML(Cn) = ∑
n
i=1(t(i)−1)

Proof. If there is a node i of threshold 3, then ML(Cn)= 1+ML(Pi+1,i−1). Since by Theorem 3, ML(Pi+1,i−1)=
1+∑ j 6=i(t( j)−1), we have ML(Cn)= 1+(1+∑ j 6=i(t( j)−1))= (t(i)−1)+∑ j 6=i(t( j)−1)=∑

n
j=1(t( j)−1)

as needed. If there is no node of threshold 3 and a single node of threshold 2, then ML(Cn) = 1 =

∑
n
j=1(t( j)− 1). Finally, if there is no node of threshold 3, and at least two nodes of threshold 2, and at

least one of threshold 1, then ML(Cn) = 1+ML(P′cc(i),c(i)) where i is a node of threshold 1. Since the thresh-
olds of c(i) and cc(i) have been reduced by 1 each in P′cc(i),c(i), by Theorem 3, we have ML(P′cc(i),c(i)) =

−1+∑ j∈[cc(i),c(i)](t( j)−1). Therefore ML(Cn) = 1−1+∑ j∈[cc(i),c(i)](t( j)−1) = ∑
n
i=1(t(i)−1).

6 Cliques

In this section, we give an algorithm to solve the Min-Links problem on cliques. Let Kn = (V,E, t) be a clique
with n nodes, V = {1,2, ...,n} and E = {(i, j) : 1≤ i < j ≤ n} and t : t(v)→ Z+. We first show a necessary
and sufficient condition for the Min-Links problem to have a feasible solution:

Proposition 3 Let Kn be a clique with t(i)≤ t(i+1), for all 1≤ i < n. Then Kn has a pervading link set if
and only if t(i)≤ i for all 1≤ i≤ n.

Proof. If t(i) ≤ i for all 1 ≤ i ≤ n, it is easy to see that there exists a solution S by giving a link to every
node i; we claim that node i is activated in or before round i. Since t(1) ≤ 1, node 1 is activated in round
1. Inductively, node 1 to i−1 are already activated in round i−1, the effective threshold of node i has been
reduced to≤ 1. Node i receives a link, therefore, node i must be activated in the ith round, if it is not already
activated. Conversely, suppose there exist nodes j such that t( j) > j and there exists a solution S to the
Min-Links problem; let p be the smallest such node with t(p) > p. In order to activate any node q ≥ p, at
least p nodes have to be activated before q, since t(q)≥ t(p)> p. However, there are only p−1 nodes that
can be activated before any such node q≥ p. Thus no node q with q≥ p can be activated, a contradiction.

We now give a greedy algorithm to solve the Min-Links problem on a clique.

9



Theorem 6 The Min-Links problem for a clique Kn can be solved in time Θ(n).

Proof. First sort the nodes in order of threshold. By Observation 1, there is no solution if any node has
a threshold > n, therefore, we can use counting sort and complete the sorting in Θ(n) time. Clearly, the
condition given in Proposition 3 can easily be checked in linear time. We now give the following greedy
linear time algorithm for a clique which has a feasible solution: give a link to node 1, and let j be the
maximum value such that t(i) < i whenever 2 ≤ i < j. Remove all nodes in {1, . . . , j− 1}, decrement by
j− 1 the thresholds of all nodes ≥ j, and solve the resulting graph recursively. It is easy to see that this
algorithm can be implemented in linear time, in an iterative fashion as follows: we examine the nodes in
order. When we process node i, if t(i)< i, we simply increment i and continue; if t(i) = i, we give a link to
node i. We now show that the link set produced by this greedy algorithm is optimal.

First we show that there must be an optimal solution that contains the node 1. Consider an optimal
solution S and let i be the smallest index of a node that receives a link in S. If i = 1, then we are done. If not,
since there must always be a node with threshold 1 that receives a link, it must be that t(i) = 1. But then we
can move the link from i to 1, to create a new solution S′ which will activate node i in the next step. Since
|S′|= |S| and I(Kn,S) = I(Kn,S′), S′ is an optimal solution to the Min-Links problem that contains the node
1. Thus, we can assume that the optimal solution S contains the node 1.

Next we claim that S−{1} is an optimal solution to the clique C′ which is the induced sub-graph on
the nodes { j, j+1, . . . ,n} where j > 1 is the smallest index with t( j) = j, and with thresholds of all nodes
reduced by j− 1. Suppose there is a smaller solution S′ to C′. We claim that S′ ∪{1} activates all nodes
in the clique Kn. Since for any node 1 < k < j, we have t(k) < k, it can be seen inductively that the link
given to node 1 suffices to activate node k. Thus, all nodes in {1,2, . . . j− 1} are activated. Furthermore,
the thresholds of all nodes in { j, j+ 1, . . . ,n} are effectively reduced by j− 1. Thus using the links in S′

suffices to activate them. Finally, since |S′| < |S|−1, S′∪{1} is a smaller solution than S to the clique Kn,
contradicting the optimality of S for Kn. We conclude that the greedy algorithm described above produces a
minimum sized solution to the Min-Links problem.

The following tight bound on the minimum number of links to activate an entire clique is immediate:

Theorem 7 Given a clique Kn which has a feasible solution, ML(Kn) = |{ j | t( j) = j}|

The greedy algorithm from Theorem 6 can be extended to complete multi-partite graphs:

Theorem 8 The Min-Links problem for a complete multi-partite graph G can be solved in time O(|E(G)|).

7 Discussion

In this paper, we introduced and studied the Min-Links problem: given a social network G where every node v
has a threshold t(v) to be activated, which minimum-sized set of nodes should an already acivatated external
influencer µ befriend, so as to influence the entire network? We showed that the problem is NP-complete,
in fact it is hard to approximate to within an ε lnn factor (for some constant 0 < ε < 1) even for graphs
with maximum degree 3, and with maximum threshold 2. In contrast, we show linear time algorithms
for the problem for trees, cycles, cliques, and complete k-partite graphs, and give an exact bound (as a
function of the thresholds) on the number of links needed for such graphs.This leaves open the question of
a polynomial time algorithm for graphs of bounded treewidth, as well as the best possible approximation
algorithm for general graphs. It would be interesting to generalize these algorithms to find the minimum
number of links required to influence a specified fraction of the nodes. Other directions include studying the
multiple influencer case, and the case with non-uniform weights on the edges. Clearly, the problem remains
NP-complete in general, but the complexity for special classes of graphs remains open. Another interesting
question is that of maximizing the number of activated nodes, given a fixed budget of k links.
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[20] David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread of influence through a social
network. In Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, KDD ’03, pages 137–146, 2003.
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Appendix

Lemma 1 Let S be an instance of Set-Cover over universe U, with |S | = n and |U| = m, and let G =
(V,E, t) be the Min-Links instance constructed as above. Then all of the following conditions are met:

1. 1 |V | ≤ mc for some constant c;

2. 2 each node of G has at most 3 neighbors;

3. 3 t(v)≤ 2 for every node v of G.

Proof. For 1, there are 2n+2m binary trees in G, which together contain at most `= 2n ·m+2m ·n = 4nm
leaves. Thus the binary trees contain less than 2` nodes in total. The heavy links account for at most 3`
nodes in total, and so |V | ≤ 5` ≤ 20nm ≤ mc for some c (because n ≤ mk). To see that 2 holds, i.e. that
the maximum degree is 3, observe that G consists of binary trees to which we add at most neighbor per
root (r(BS) with r(B′S), and r(Cu) with r(C′u)), plus at most two neighbors per leaf (the heavy links). In the
case that a node is both a root and a leaf (e.g. BSi is a single node because Si has only one element), three
neighbors are added to it, but it has zero neighbors initially. As for 3, it is easy to see that t(v)≤ 2 for every
node v ∈V created.

Theorem 3 Let T be a tree that has a feasible solution. Then ML(T ) = 1+∑v∈T (t(v)−1)

Proof. We give a proof by induction on the number of nodes n in the tree. Clearly if the tree consists of a
single node x, there is a solution if and only if t(x) = 1, and the number of links needed is 1 which is equal
to 1+∑v∈V (t(v)−1) as needed. Now consider a tree T with n > 1 nodes and let x be a leaf in the tree. Then
by Lemma 3, there is an optimal solution S in which x gets a link. By Observation 1, there is a solution only
if t(x) = 1 or t(x) = 2. Let T ′ = T −{x} (all nodes keep the same thresholds as in T ) and let T ′′ be the tree
derived from T by removing x and reducing the threshold of w, the neighbor of x in T by 1.

First we consider the case when t(x) = 2. Then giving x a link is not sufficient to activate it. By the
usual cut-and-paste argument, S−{(µ,x)} must be an optimal solution for tree T ′.

ML(T ) = 1+ML(T ′)

= t(x)−1+(1+ ∑
v∈T ′

(t(v)−1)) by the inductive hypothesis

= 1+ ∑
v∈T

(t(v)−1)

Next we consider the case when t(x) = 1, and t(w) > 1. Then x is immediately activated by the link it
receives in S, and the link given to x effectively reduces the threshold of w. Therefore, S−{(µ,x)} must be
an optimal solution for the tree T ′′ in which the threshold of w is t(w)−1. It follows that

ML(T ) = 1+ML(T ′′)

= 1+(1+ ∑
v∈T ′′

(t(v)−1)) by the inductive hypothesis

= 2+(t(w)−2)+ ∑
v∈T ′′−{w}

(t(v)−1)

= 1+ ∑
v∈T

(t(v)−1)
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Finally suppose t(x) = t(w) = 1. Then it is impossible that S contains w, as this would contradict the
optimality of S. Therefore, we can move the link from node v to node w, to get a new optimal pervading link
set S′ for T . Furthermore, S′ must also be an optimal pervading link set for T ′. It follows that

ML(T ) = ML(T ′)

= t(x)−1+(1+ ∑
v∈T ′

(t(v)−1)) by the inductive hypothesis

= 1+ ∑
v∈T

(t(v)−1)

Proposition 2 A cycle has a pervading link set if and only if all the conditions below are met:

1. there is at least one node of threshold 1

2. every node is of threshold at most 3

3. between any two consecutive nodes of threshold 3, there is at least one node of threshold 1.

Proof. The necessity of the first two conditions follows from Observation 1. Suppose there are two con-
secutive nodes i and j with j > 1, and with threshold 3, such that all nodes between them have threshold 2.
Then both nodes i and j needs both their neighbors to be activated before them, but meanwhile, since there
is no node of threshold 1, no node in the the sub-path Pi+1, j−1 can be activated. Therefore none of the nodes
in the sub-path Pi, j can be activated. Conversely, if all three conditions listed in the statement are met, it is
easy to see that by giving a link to every node in the cycle, all the nodes in the cycle can be activated.

Theorem 8 The Min-Links problem for a complete multi-partite G can be solved in time O(|E(G)|).

Proof. Let V1, . . . ,Vk be the vertex sets of G. Consider the following algorithm: give a link to any vertex
of threshold 1, activate it and propagate its influence, remove activated vertices, and repeat until no vertex
of threshold 1 remains. In order to propagate the influence of an activated vertex, each of its neighbors
may need to be visited, hence the O(|E|) complexity. If the resulting graph is non-empty, then G clearly
cannot have a feasible solution. If it is empty, we claim that the vertices activated during this process form
a minimum link set.

We prove our claim by induction on n. If G has 1 vertex, this is trivial. Assume n > 1, and let S be
a minimum link set for G. Let v be the first vertex picked by the algorithm. We show that some optimal
solution contains the link (µ,v). Assume that (µ,v) /∈ S. Let w be a vertex of threshold 1 in S. If v ∈ Vi

and w ∈Vj, i 6= j, then v∼ w and w∼ v, implying that (S\{(µ,w})∪{(µ,v)} is also optimal. Otherwise, if
v,w∈Vi for some i, then v and w have the same set of neighbors. Then w can be replaced by v in S, since both
vertices have the same influence on G after activation. Therefore, we may now assume that (µ,v)∈ S. Let G′

be the graph obtained after activating v, propagating its influence, and removing the activated vertices. The
property of being complete multi-partite is preserved by vertex deletion, and so G′ is still complete multi-
partite. By induction, the algorithm finds a minimum link set S′ on G′. It is not hard to see that S′∪{(µ,v)}
is an optimal link set.
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