### A Survey on Smoothing Networks

**Thomas Sauerwald** 



21 July 2016







#### Goal: Design smoothing networks for asynchronous load balancing

- + simple and elegant constructions
- + networks will be super-efficient
- + interesting mathematical theory
- + extremely sharp and tight results



- pre-specified static networks
- may not even work for any n





### Outline

Introduction

### Sorting Networks

**Counting Networks** 

Randomized Smoothing Networks

Stronger Notions of Smoothing Networks

Conclusion



Sorting Network

A sorting network consists solely of wires and comparators:



Sorting Network \_\_\_\_\_

- A sorting network consists solely of wires and comparators:
  - comparator is a device with, on given two inputs, x and y, returns two outputs x' = min(x, y) and y' = max(x, y)



#### Periodic Balanced Sorting Network [Dowd, Perl, Rudolph, Saks'89]





#### O(log<sup>2</sup> n) sorting networks —

- $\frac{1}{2} \log^2 n$  depth: Batcher's Sorting Network
- log<sup>2</sup> n depth: Periodic Balanced Sorting Network



#### $O(\log^2 n)$ sorting networks –

- $\frac{1}{2}\log^2 n$  depth: Batcher's Sorting Network
- log<sup>2</sup> n depth: Periodic Balanced Sorting Network

Can we construct sorting networks of depth  $O(\log n)$ ?



#### O(log<sup>2</sup> n) sorting networks —

- $\frac{1}{2} \log^2 n$  depth: Batcher's Sorting Network
- log<sup>2</sup> n depth: Periodic Balanced Sorting Network

Can we construct sorting networks of depth  $O(\log n)$ ?

Ajtai, Komlós, Szemerédi (1983) -

There exists a sorting network with depth  $O(\log n)$ .



#### $O(\log^2 n)$ sorting networks -

- $\frac{1}{2} \log^2 n$  depth: Batcher's Sorting Network
- log<sup>2</sup> n depth: Periodic Balanced Sorting Network

Can we construct sorting networks of depth  $O(\log n)$ ?

Ajtai, Komlós, Szemerédi (1983) -

There exists a sorting network with depth  $O(\log n)$ .

Extremely sophisticated construction that uses expander graphs and involves huges constants.



### AKS network vs. Batcher's network



#### Donald E. Knuth (Stanford)

"Batcher's method is much better, unless n exceeds the total memory capacity of all computers on earth!"



#### Richard J. Lipton (Georgia Tech)

"The AKS sorting network is **galactic**: it needs that n be larger than 2<sup>78</sup> or so to finally be smaller than Batcher's network for n items."





Sorting Networks \_\_\_\_\_

- sorts any input of size n
- special case of Comparison Networks







- balances any stream of tokens over n wires
- special case of Smoothing Networks





Introduction

Sorting Networks

### **Counting Networks**

Randomized Smoothing Networks

Stronger Notions of Smoothing Networks

Conclusion



Distributed Counting \_\_\_\_\_

Processors collectively assign successive values from a given range.



- Distributed Counting -

Processors collectively assign successive values from a given range.

Values could represent addresses in memories or destinations on an interconnection network



Distributed Counting -

Processors collectively assign successive values from a given range.

- like sorting networks: instead of comparators, consists of balancers
- balancers are asynchronous flip-flops that forward tokens from its inputs to one of its two outputs alternately (top, bottom, top,...)



Distributed Counting -

Processors collectively assign successive values from a given range.

- like sorting networks: instead of comparators, consists of balancers
- balancers are asynchronous flip-flops that forward tokens from its inputs to one of its two outputs alternately (top, bottom, top,...)





Distributed Counting -

Processors collectively assign successive values from a given range.

- like sorting networks: instead of comparators, consists of balancers
- balancers are asynchronous flip-flops that forward tokens from its inputs to one of its two outputs alternately (top, bottom, top,...)





Distributed Counting -

Processors collectively assign successive values from a given range.

- like sorting networks: instead of comparators, consists of balancers
- balancers are asynchronous flip-flops that forward tokens from its inputs to one of its two outputs alternately (top, bottom, top,...)





Distributed Counting -

Processors collectively assign successive values from a given range.

- like sorting networks: instead of comparators, consists of balancers
- balancers are asynchronous flip-flops that forward tokens from its inputs to one of its two outputs alternately (top, bottom, top,...)





Distributed Counting -

Processors collectively assign successive values from a given range.

- like sorting networks: instead of comparators, consists of balancers
- balancers are asynchronous flip-flops that forward tokens from its inputs to one of its two outputs alternately (top, bottom, top,...)





Distributed Counting -

Processors collectively assign successive values from a given range.

- like sorting networks: instead of comparators, consists of balancers
- balancers are asynchronous flip-flops that forward tokens from its inputs to one of its two outputs alternately (top, bottom, top,...)





Distributed Counting -

Processors collectively assign successive values from a given range.

- like sorting networks: instead of comparators, consists of balancers
- balancers are asynchronous flip-flops that forward tokens from its inputs to one of its two outputs alternately (top, bottom, top,...)





Distributed Counting -

Processors collectively assign successive values from a given range.

- like sorting networks: instead of comparators, consists of balancers
- balancers are asynchronous flip-flops that forward tokens from its inputs to one of its two outputs alternately (top, bottom, top,...)





Distributed Counting -

Processors collectively assign successive values from a given range.

- like sorting networks: instead of comparators, consists of balancers
- balancers are asynchronous flip-flops that forward tokens from its inputs to one of its two outputs alternately (top, bottom, top,...)




# **Counting Network**

Distributed Counting —

Processors collectively assign successive values from a given range.

Smoothing Networks -

- like sorting networks: instead of comparators, consists of balancers
- balancers are asynchronous flip-flops that forward tokens from its inputs to one of its two outputs alternately (top, bottom, top,...)





# **Counting Network**

Distributed Counting —

Processors collectively assign successive values from a given range.

Smoothing Networks -

- like sorting networks: instead of comparators, consists of balancers
- balancers are asynchronous flip-flops that forward tokens from its inputs to one of its two outputs alternately (top, bottom, top,...)





# **Counting Network**

Distributed Counting -

Processors collectively assign successive values from a given range.

Smoothing Networks

- like sorting networks: instead of comparators, consists of balancers
- balancers are asynchronous flip-flops that forward tokens from its inputs to one of its two outputs alternately (top, bottom, top,...)





#### Counting Network (Formal Definition) -

- 1. Let *x*<sub>1</sub>, *x*<sub>2</sub>,..., *x<sub>n</sub>* be the number of tokens (ever received) on the designated input wires
- 2. Let *y*<sub>1</sub>, *y*<sub>2</sub>,..., *y<sub>n</sub>* be the number of tokens (ever received) on the designated output wires



### Counting Network (Formal Definition)

- 1. Let *x*<sub>1</sub>, *x*<sub>2</sub>,..., *x<sub>n</sub>* be the number of tokens (ever received) on the designated input wires
- 2. Let *y*<sub>1</sub>, *y*<sub>2</sub>,..., *y<sub>n</sub>* be the number of tokens (ever received) on the designated output wires
- 3. In a quiescent state:  $\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i$
- 4. A counting network is a smoothing network with the step-property:

$$0 \leq y_i - y_j \leq 1$$
 for any  $i < j$ .



### Counting Network (Formal Definition)

- 1. Let *x*<sub>1</sub>, *x*<sub>2</sub>, . . . , *x<sub>n</sub>* be the number of tokens (ever received) on the designated input wires
- 2. Let *y*<sub>1</sub>, *y*<sub>2</sub>, ..., *y<sub>n</sub>* be the number of tokens (ever received) on the designated output wires
- 3. In a quiescent state:  $\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i$
- 4. A counting network is a smoothing network with the step-property:

$$0 \leq y_i - y_j \leq 1$$
 for any  $i < j$ .

**Bitonic Counting Network:** Take Batcher's Sorting Network and replace each comparator by a balancer.



















































































































































































































































































## A Periodic Counting Network [Aspnes, Herlihy, Shavit '94]





## From Counting to Sorting

- Counting vs. Sorting -

If a network is a counting network, then it is also a sorting network.



## From Counting to Sorting





## From Counting to Sorting




## From Counting to Sorting



#### Observation

Any sorting network of depth *d* and *n* wires yields a sorting network of depth *d* and n - 1 wires.



# From Counting to Sorting



Observation -

Any counting network must have  $n = 2^k$  wires.



Observation -

Any counting network must have  $n = 2^k$  wires.

Proof:



Observation

Any counting network must have  $n = 2^k$  wires.

Proof:

Any output wire *y<sub>i</sub>* can be expressed as:

$$y_i = \sum_{j=1}^n \frac{a_j}{2^\ell} x_j +$$
 "Rounding Error".



Observation

Any counting network must have  $n = 2^k$  wires.

Proof:

Any output wire y<sub>i</sub> can be expressed as:

$$y_i = \sum_{j=1}^n \frac{a_j}{2^\ell} x_j +$$
 "Rounding Error",

- where:
  - $a_1, a_2, \ldots, a_n$  and  $\ell$  are integers,
  - "Rounding Error" is at most the depth of the network



Observation

Any counting network must have  $n = 2^k$  wires.

Proof:

Any output wire y<sub>i</sub> can be expressed as:

$$y_i = \sum_{j=1}^n \frac{a_j}{2^\ell} x_j +$$
 "Rounding Error"

where:

- $a_1, a_2, \ldots, a_n$  and  $\ell$  are integers,
- "Rounding Error" is at most the depth of the network

 $\Rightarrow$  necessary condition is that  $\frac{a_j}{2^j} = \frac{1}{n}$ 



- Klugerman, Plaxton (1992) -

There exists a  $O(\log n)$ -depth counting network.









## An Optimal Counting Network







## An Optimal Counting Network





Can we trade-off simplicity of network and initialization against smoothness?



Introduction

Sorting Networks

**Counting Networks** 

Randomized Smoothing Networks

Stronger Notions of Smoothing Networks

Conclusion







Deterministic:

Each balancer must be oriented to a certain state



#### Deterministic:

Each balancer must be oriented to a certain state

#### Randomized:

Each balancer is oriented top or bottom uniformly at random



Deterministic:

Each balancer must be oriented to a certain state

Randomized:

Each balancer is oriented top or bottom uniformly at random

• Arbitrary:

Each balancer is oriented arbitrarily





- Deterministic: Each balancer must be oriented to a certain state
- Randomized:

Each balancer is oriented top or bottom uniformly at random

Arbitrary:

Each balancer is oriented arbitrarily





 Deterministic: Each balancer must be oriented to a certain state

Randomized:

Each balancer is oriented top or bottom uniformly at random

• Arbitrary: Each balancer is oriented arbitrarily

Randomized Initialization is a promising compromise:

- avoids need of global coordination
- achieves good discrepancy (=difference between maxload and minload)









Motivation .

- very simple recursive structure
- connects all inputs and outputs using minimum depth log<sub>2</sub> n
- corresponds to dimension exchange on hypercubes





Motivation .

- very simple recursive structure
- connects all inputs and outputs using minimum depth log<sub>2</sub> n
- corresponds to dimension exchange on hypercubes







Motivation .

- very simple recursive structure
- connects all inputs and outputs using minimum depth log<sub>2</sub> n
- corresponds to dimension exchange on hypercubes







Motivation .

- very simple recursive structure
- connects all inputs and outputs using minimum depth log<sub>2</sub> n
- corresponds to dimension exchange on hypercubes







Motivation .

- very simple recursive structure
- connects all inputs and outputs using minimum depth log<sub>2</sub> n
- corresponds to dimension exchange on hypercubes







Motivation .

- very simple recursive structure
- connects all inputs and outputs using minimum depth log<sub>2</sub> n
- corresponds to dimension exchange on hypercubes







# Upper Bounds on the discrepancy for a single CCC

Randomized Initialization is a promising compromise:

- avoids need of global coordination
- achieves good discrepancy (=difference between maxload and minload)



Herlihy, Tirthapura, 2006

For any input the discrepancy is at most  $\mathcal{O}(\sqrt{\log n})$  w.p.  $1 - n^{-1}$ .



Randomized Initialization is a promising compromise:

- avoids need of global coordination
- achieves good discrepancy (=difference between maxload and minload)



Herlihy, Tirthapura, 2006 -

For any input the discrepancy is at most  $\mathcal{O}(\sqrt{\log n})$  w.p.  $1 - n^{-1}$ .

Mavronicolas, S., 2010 — For any input the discrepancy is at most  $\log_2 \log_2 n + 4$  w.p.  $1 - n^{-1}$ .



#### Step 2: Expressing the Rounding Error





#### Step 2: Expressing the Rounding Error



with  $e_i^t$  being the rounding error,



#### Step 2: Expressing the Rounding Error



with  $e_i^t$  being the rounding error,

$$\boldsymbol{e}_i^t = \mathsf{Odd}(\boldsymbol{x}_i^{t-1} + \boldsymbol{x}_j^{t-1}) \cdot \boldsymbol{\Phi}_i^t,$$

where the  $\Phi_i^t \in \{-1/2, +1/2\}$  is the (random) orientation.


### Step 2: Expressing the Rounding Error





*Y*000



$$y_{000} = \frac{1}{2}y_{000}^2 + \frac{1}{2}y_{001}^2 + e_{000}^3$$







$$y_{000} = \frac{1}{2}x_{000}^2 + \frac{1}{2}x_{001}^2 + e_{000}^3$$
  
=  $\frac{1}{4}y_{000}^1 + \frac{1}{4}y_{001}^1 + \frac{1}{4}y_{001}^1 + \frac{1}{4}y_{011}^1 + e_{000}^3 + \frac{1}{2}e_{000}^2 + \frac{1}{2}e_{001}^2$ 









$$y_{000} = \frac{1}{8}x_{000} + \frac{1}{8}x_{100} + \frac{1}{8}x_{010} + \frac{1}{8}x_{110} + \frac{1}{8}x_{001} + \frac{1}{8}x_{101} + \frac{1}{8}x_{011} + \frac{1}{8}x_{111} + \frac{1}{8}x_{111} + \frac{1}{8}x_{010} + \frac{1}{2}e_{000}^2 + \frac{1}{2}e_{001}^2 + \frac{1}{4}e_{010}^1 + \frac{1}{4}e_{010}^1 + \frac{1}{4}e_{011}^1 + \frac{1}{4}e_{011}^1$$



continuous part and discrete part



A Survey on Smoothing Networks

$$y_{000} = \frac{1}{8}x_{000} + \frac{1}{8}x_{100} + \frac{1}{8}x_{010} + \frac{1}{8}x_{110} + \frac{1}{8}x_{001} + \frac{1}{8}x_{101} + \frac{1}{8}x_{011} + \frac{1}{8}x_{111} + \frac{1}{8}x_{111} + \frac{1}{8}x_{010} + \frac{1}{2}e_{000}^2 + \frac{1}{2}e_{001}^2 + \frac{1}{4}e_{010}^1 + \frac{1}{4}e_{010}^1 + \frac{1}{4}e_{011}^1 + \frac{1}{4}e_{011}^1$$



- continuous part and discrete part
- continuous part equals the average load



A Survey on Smoothing Networks

$$y_{000} = \frac{1}{8}x_{000} + \frac{1}{8}x_{100} + \frac{1}{8}x_{010} + \frac{1}{8}x_{110} + \frac{1}{8}x_{001} + \frac{1}{8}x_{101} + \frac{1}{8}x_{011} + \frac{1}{8}x_{111} + \frac{1}{8}x_{011} + \frac{1}{8}x_{01} + \frac{1}{8}x_{01} + \frac{1}{8}x_{01} + \frac{1}{8}x_{01}$$



- continuous part and discrete part
- continuous part equals the average load
- $\Rightarrow$  loads are divisible, then perfectly balanced



A Survey on Smoothing Networks

## Step 4: Handling the Deviation

$$y_{000} = \frac{1}{8}x_{000} + \frac{1}{8}x_{100} + \frac{1}{8}x_{010} + \frac{1}{8}x_{110} + \frac{1}{8}x_{001} + \frac{1}{8}x_{101} + \frac{1}{8}x_{011} + \frac{1}{8}x_{011} + \frac{1}{8}x_{111} + \frac{1}{8}x_{011} + \frac{1}{8}x_{01} + \frac{1}{8}x_{01} + \frac{1}{8}x_{01} + \frac{1}{8}x_{01}$$



## Step 4: Handling the Deviation

$$y_{000} = \frac{1}{8}x_{000} + \frac{1}{8}x_{100} + \frac{1}{8}x_{010} + \frac{1}{8}x_{110} + \frac{1}{8}x_{001} + \frac{1}{8}x_{101} + \frac{1}{8}x_{011} + \frac{1}{8}x_{111} + \frac{1}{8}x_{111} + \frac{1}{8}x_{010} + \frac{1}{2}e_{000}^2 + \frac{1}{2}e_{001}^2 + \frac{1}{4}e_{000}^1 + \frac{1}{4}e_{010}^1 + \frac{1}{4}e_{001}^1 + \frac{1}{4}e_{011}^1$$

Divide rounding errors into two groups:



$$y_{000} = \frac{1}{8}x_{000} + \frac{1}{8}x_{100} + \frac{1}{8}x_{010} + \frac{1}{8}x_{110} + \frac{1}{8}x_{001} + \frac{1}{8}x_{101} + \frac{1}{8}x_{011} + \frac{1}{8}x_{111} + \frac{1}{8}x_{111} + \frac{1}{8}x_{010} + \frac{1}{2}e_{000}^2 + \frac{1}{2}e_{001}^2 + \frac{1}{4}e_{000}^1 + \frac{1}{4}e_{010}^1 + \frac{1}{4}e_{001}^1 + \frac{1}{4}e_{011}^1$$

- Divide rounding errors into two groups:
  - 1. Layers  $1, \ldots, \log_2 n \log_2 \log_2 n$
  - 2. Layers  $\log_2 n \log_2 \log_2 n + 1, \dots, \log_2 n$



## Step 4: Handling the Deviation

$$y_{000} = \frac{1}{8}x_{000} + \frac{1}{8}x_{100} + \frac{1}{8}x_{010} + \frac{1}{8}x_{110} + \frac{1}{8}x_{001} + \frac{1}{8}x_{101} + \frac{1}{8}x_{011} + \frac{1}{8}x_{111} + e_{000}^3 + \frac{1}{2}e_{000}^2 + \frac{1}{2}e_{001}^2 + \frac{1}{4}e_{000}^1 + \frac{1}{4}e_{010}^1 + \frac{1}{4}e_{011}^1 + \frac{1}{$$



$$y_{000} = \frac{1}{8}x_{000} + \frac{1}{8}x_{100} + \frac{1}{8}x_{010} + \frac{1}{8}x_{110} + \frac{1}{8}x_{001} + \frac{1}{8}x_{101} + \frac{1}{8}x_{011} + \frac{1}{8}x_{111} + e_{000}^3 + \frac{1}{2}e_{000}^2 + \frac{1}{2}e_{001}^2 + \frac{1}{4}e_{000}^1 + \frac{1}{4}e_{011}^1 + \frac{1}{$$



$$y_{000} = \frac{1}{8}x_{000} + \frac{1}{8}x_{100} + \frac{1}{8}x_{010} + \frac{1}{8}x_{110} + \frac{1}{8}x_{001} + \frac{1}{8}x_{101} + \frac{1}{8}x_{011} + \frac{1}{8}x_{111} + \frac{1}{8}x_{011} + \frac{1}{8}x_{111} + \frac{1}{8}x_{010} + \frac{1}{2}e_{000}^2 + \frac{1}{2}e_{001}^2 + \frac{1}{4}e_{000}^1 + \frac{1}{4}e_{010}^1 + \frac{1}{4}e_{001}^1 + \frac{1}{4}e_{011}^1 + \frac{1}{8}x_{011} +$$

- Divide rounding errors into two groups:
  - 1. Layers  $1, \ldots, \log_2 n \log_2 \log_2 n$
  - 2. Layers  $\log_2 n \log_2 \log_2 n + 1, ..., \log_2 n$
- Chernoff  $\Rightarrow$  first group contributes  $\leq$  2
- trivial bound  $\Rightarrow$  second group contributes  $\frac{1}{2} \log_2 \log_2 n$





$$y_{000} = \frac{1}{8}x_{000} + \frac{1}{8}x_{100} + \frac{1}{8}x_{010} + \frac{1}{8}x_{110} + \frac{1}{8}x_{001} + \frac{1}{8}x_{101} + \frac{1}{8}x_{011} + \frac{1}{8}x_{111} + \frac{1}{8}x_{011} + \frac{1}{8}x_{111} + \frac{1}{8}x_{010} + \frac{1}{2}e_{000}^2 + \frac{1}{2}e_{001}^2 + \frac{1}{4}e_{000}^1 + \frac{1}{4}e_{010}^1 + \frac{1}{4}e_{001}^1 + \frac{1}{4}e_{011}^1 + \frac{1}$$

- Divide rounding errors into two groups:
  - 1. Layers  $1, \ldots, \log_2 n \log_2 \log_2 n$
  - 2. Layers  $\log_2 n \log_2 \log_2 n + 1, ..., \log_2 n$
- Chernoff  $\Rightarrow$  first group contributes  $\leq$  2
- trivial bound  $\Rightarrow$  second group contributes  $\frac{1}{2} \log_2 \log_2 n$

 $\Rightarrow$  discrepancy is at most  $\log_2 \log_2 n + 4$ 

| X1→ | [ | 1                       | <i>⊳y</i> 1 |
|-----|---|-------------------------|-------------|
|     |   | CCC(log <sub>2</sub> n) |             |
|     | 1 | 2222                    |             |
|     | 1 |                         |             |
|     | 1 |                         |             |
|     | 1 | CCC(n)                  |             |
|     | 1 | CCC(n)                  |             |
|     | 1 |                         |             |
|     |   |                         |             |
|     |   |                         |             |
|     |   | 100                     |             |
| 1   | 1 | log                     | 211         |



#### - Upper Bound (Mavronicolas, S., 2010) -

For any input the discrepancy is at most  $\log_2 \log_2 n + 4$  w.p.  $1 - n^{-1}$ .



#### - Upper Bound (Mavronicolas, S., 2010) -

For any input the discrepancy is at most  $\log_2 \log_2 n + 4$  w.p.  $1 - n^{-1}$ .

Lower Bound (Mavronicolas, S., 2010) -

For some inputs the discrepancy is at least  $\log_2 \log_2 n - 2$  w.p.  $1 - n^{-1}$ .















Input for lower bound look contrived, so what about random inputs?



Input for lower bound look contrived, so what about random inputs?

Average-Case Model \_\_\_\_

Assume number of tokens at each input wire is  $\sim Uni[0, \log_2 n - 1]$ .









For this input, discrepancy is at least  $(1/2 - o(1)) \log_2 \log_2 n$  w.p. 1 - o(1).



Input for lower bound look contrived, so what about random inputs?

Average-Case Mod One can prove that the range  $[0, \log_2 n - 1]$  is canonical.

Assume number of tokens at each input wire is  $\sim Uni[0, \log_2 n - 1]$ .

#### Friedrich, Vilenchik, S.'11

For this input, discrepancy is at least  $(1/2 - o(1)) \log_2 \log_2 n$  w.p. 1 - o(1).

#### "Magic Property":

 All rounding errors become independent(!) random variables

$$-1/2$$
 with probability  $1/4$ 

with probability 
$$1/2$$

$$+1/2$$
 with probability  $1/4$ 





Mavronicolas, S., 2010

For any input to the CCC, the discrepancy is  $\log_2 \log_2 n \pm O(1)$ .



#### Mavronicolas, S., 2010

For any input to the CCC, the discrepancy is  $\log_2 \log_2 n \pm O(1)$ .

#### What happens if we take the cascade of two or more CCC's?







For any input to the CCC, the discrepancy is  $\log_2 \log_2 n \pm O(1)$ .

What happens if we take the cascade of two or more CCC's?



Mavronicolas, S., 2010

For any input the discrepancy is at most >6 3 w.p.  $1 - n^{-1}$ .





For any input to the CCC, the discrepancy is  $\log_2 \log_2 n \pm O(1)$ .

#### What happens if we take the cascade of two or more CCC's?





Introduction

Sorting Networks

**Counting Networks** 

Randomized Smoothing Networks

Stronger Notions of Smoothing Networks

Conclusion



# A (More) "Universal" Model

(Standard) Smoothing Network -

- deterministic initialization: input arbitrary
- random initialization: input arbitrary, but without knowing initialization





# A (More) "Universal" Model





# A (More) "Universal" Model



Universal Randomized Smoothing Network -

 random initialization: input arbitrary with knowledge of initialization




# A (More) "Universal" Model



- Lower Bound (Mavronicolas, S.'10)

For any initialisation of the CCC, there exists an input so that the discrepancy is at least  $(1/4) \log_2 n$ .



- Lower Bound (Mavronicolas, S.'10)

For any initialisation of the CCC, there exists an input so that the discrepancy is at least  $(1/4) \log_2 n$ .

Is the cascade of two (or more) CCC's a universal smoothing network?



Lower Bound (Mavronicolas, S.'10)

For any initialisation of the CCC, there exists an input so that the discrepancy is at least  $(1/4) \log_2 n$ .





- Lower Bound (Mavronicolas, S.'10)

For any initialisation of the CCC, there exists an input so that the discrepancy is at least  $(1/4) \log_2 n$ .



#### Conjecture (Kosowski, S.) -

There is a constant  $\epsilon > 0$ , so that cascading  $\Theta(\text{polylog}(n))$ CCC's achieves a discrepancy of at most  $O((\log n)^{1-\epsilon})$ .















"Doubly" Adversarial Model -----

 input and initialisation controlled by an adversary





Observation -

One CCC achieves discrepancy of  $\log_2 n$  for any input and initialisation.



#### Observation -

One CCC achieves discrepancy of  $\log_2 n$  for any input and initialisation.

## Conjecture (Kosowski, S., 2016) -----

Take the cascade of O(polylog(n)) random perfect matchings. Then the discrepancy is at most  $O(\log n / \log \log n)$ .



#### Observation -

One CCC achieves discrepancy of  $\log_2 n$  for any input and initialisation.

## Conjecture (Kosowski, S., 2016) -----

Take the cascade of O(polylog(n)) random perfect matchings. Then the discrepancy is at most  $O(\log n / \log \log n)$ .

#### Lower Bound

For any universal smoothing network of depth *d*, there is an input so that the discrepancy is at least  $\frac{\log n}{\log d}$ .



#### Observation -

One CCC achieves discrepancy of  $\log_2 n$  for any input and initialisation.

## - Conjecture (Kosowski, S., 2016) —

Take the cascade of O(polylog(n)) random perfect matchings. Then the discrepancy is at most  $O(\log n / \log \log n)$ .

#### Lower Bound

For any universal smoothing network of depth *d*, there is an input so that the discrepancy is at least  $\frac{\log n}{\log d}$ .

# ♠

Lemma

For any graph with maxdegree  $\Delta$ , diam(*G*)  $\geq \log n/(\log \Delta)$ .



#### Observation -

One CCC achieves discrepancy of  $\log_2 n$  for any input and initialisation.

## Conjecture (Kosowski, S., 2016) -

Take the cascade of O(polylog(n)) random perfect matchings. Then the discrepancy is at most  $O(\log n / \log \log n)$ .

#### Lower Bound

For any universal smoothing network of depth *d*, there is an input so that the discrepancy is at least  $\frac{\log n}{\log d}$ .

# ♠

Lemma

For any graph with maxdegree  $\Delta$ , diam(*G*)  $\geq \log n/(\log \Delta)$ .

One can reach at most  $\Delta^k$  vertices from any node in *k* hops.



Introduction

Sorting Networks

**Counting Networks** 

Randomized Smoothing Networks

Stronger Notions of Smoothing Networks

## Conclusion



# Summary

| Model / Discrepancy | 1                | 2             | $(\log n)^{1-\epsilon}$             | log n<br>log log n             | log n        |
|---------------------|------------------|---------------|-------------------------------------|--------------------------------|--------------|
| Counting            | $\Theta(\log n)$ | $\checkmark$  | $\checkmark$                        | $\checkmark$                   | $\checkmark$ |
| Random Smoothing    | Ω( <i>n</i> )    | O(log n)      | $\checkmark$                        | $\checkmark$                   | $\checkmark$ |
| Random Universal    | ??               | ??            | O(polylog(n))                       | $\checkmark$                   | log n        |
| Adversarial         | $\infty$         | Ω( <i>n</i> ) | $\Omega(2^{(\log n)^{1-\epsilon}})$ | $O(\operatorname{polylog}(n))$ | log n        |



# Summary

| Model / Discrepancy | 1                | 2             | $(\log n)^{1-\epsilon}$             | log n<br>log log n             | log n        |
|---------------------|------------------|---------------|-------------------------------------|--------------------------------|--------------|
| Counting            | $\Theta(\log n)$ | $\checkmark$  | $\checkmark$                        | $\checkmark$                   | $\checkmark$ |
| Random Smoothing    | Ω( <i>n</i> )    | O(log n)      | $\checkmark$                        | $\checkmark$                   | $\checkmark$ |
| Random Universal    | ??               | ??            | O(polylog(n))                       | $\checkmark$                   | log n        |
| Adversarial         | $\infty$         | Ω( <i>n</i> ) | $\Omega(2^{(\log n)^{1-\epsilon}})$ | $O(\operatorname{polylog}(n))$ | log n        |

Random Smoothing on Arbitrary Graphs (Sun, S.'12)

For arbitrary graphs, one can achieve a constant discrepancy in  $\Theta(\log(Kn)/(1-\lambda_2))$  rounds, where *K* is the initial discrepancy and  $1-\lambda_2$  is the spectral gap.



# Summary

| Model / Discrepancy | 1                | 2             | $(\log n)^{1-\epsilon}$             | log n<br>log log n             | log n        |
|---------------------|------------------|---------------|-------------------------------------|--------------------------------|--------------|
| Counting            | $\Theta(\log n)$ | $\checkmark$  | $\checkmark$                        | $\checkmark$                   | $\checkmark$ |
| Random Smoothing    | Ω( <i>n</i> )    | O(log n)      | $\checkmark$                        | $\checkmark$                   | $\checkmark$ |
| Random Universal    | ??               | ??            | O(polylog(n))                       | $\checkmark$                   | log n        |
| Adversarial         | $\infty$         | Ω( <i>n</i> ) | $\Omega(2^{(\log n)^{1-\epsilon}})$ | $O(\operatorname{polylog}(n))$ | log n        |

Random Smoothing on Arbitrary Graphs (Sun, S.'12)

For arbitrary graphs, one can achieve a constant discrepancy in  $\Theta(\log(Kn)/(1-\lambda_2))$  rounds, where *K* is the initial discrepancy and  $1-\lambda_2$  is the spectral gap.

- random smoothing networks appear to be relatively well-understood
- first results in the universal/adversarial model are sketchy, but hint at an interesting landscape

