A Survey on Smoothing Networks

Thomas Sauerwald

21 July 2016

Goal: Design smoothing networks for asynchronous load balancing

- + simple and elegant constructions
- + networks will be super-efficient
- + interesting mathematical theory
- + extremely sharp and tight results

- pre-specified static networks
- may not even work for any n

Outline

Introduction

Sorting Networks

Counting Networks

Randomized Smoothing Networks

Stronger Notions of Smoothing Networks

Conclusion

Sorting Network

A sorting network consists solely of wires and comparators:

Sorting Network _____

- A sorting network consists solely of wires and comparators:
 - comparator is a device with, on given two inputs, x and y, returns two outputs x' = min(x, y) and y' = max(x, y)

Periodic Balanced Sorting Network [Dowd, Perl, Rudolph, Saks'89]

O(log² n) sorting networks —

- $\frac{1}{2} \log^2 n$ depth: Batcher's Sorting Network
- log² n depth: Periodic Balanced Sorting Network

$O(\log^2 n)$ sorting networks –

- $\frac{1}{2}\log^2 n$ depth: Batcher's Sorting Network
- log² n depth: Periodic Balanced Sorting Network

Can we construct sorting networks of depth $O(\log n)$?

O(log² n) sorting networks —

- $\frac{1}{2} \log^2 n$ depth: Batcher's Sorting Network
- log² n depth: Periodic Balanced Sorting Network

Can we construct sorting networks of depth $O(\log n)$?

Ajtai, Komlós, Szemerédi (1983) -

There exists a sorting network with depth $O(\log n)$.

$O(\log^2 n)$ sorting networks -

- $\frac{1}{2} \log^2 n$ depth: Batcher's Sorting Network
- log² n depth: Periodic Balanced Sorting Network

Can we construct sorting networks of depth $O(\log n)$?

Ajtai, Komlós, Szemerédi (1983) -

There exists a sorting network with depth $O(\log n)$.

Extremely sophisticated construction that uses expander graphs and involves huges constants.

AKS network vs. Batcher's network

Donald E. Knuth (Stanford)

"Batcher's method is much better, unless n exceeds the total memory capacity of all computers on earth!"

Richard J. Lipton (Georgia Tech)

"The AKS sorting network is **galactic**: it needs that n be larger than 2⁷⁸ or so to finally be smaller than Batcher's network for n items."

Sorting Networks _____

- sorts any input of size n
- special case of Comparison Networks

- balances any stream of tokens over n wires
- special case of Smoothing Networks

Introduction

Sorting Networks

Counting Networks

Randomized Smoothing Networks

Stronger Notions of Smoothing Networks

Conclusion

Distributed Counting _____

Processors collectively assign successive values from a given range.

- Distributed Counting -

Processors collectively assign successive values from a given range.

Values could represent addresses in memories or destinations on an interconnection network

Distributed Counting -

Processors collectively assign successive values from a given range.

- like sorting networks: instead of comparators, consists of balancers
- balancers are asynchronous flip-flops that forward tokens from its inputs to one of its two outputs alternately (top, bottom, top,...)

Distributed Counting -

Processors collectively assign successive values from a given range.

- like sorting networks: instead of comparators, consists of balancers
- balancers are asynchronous flip-flops that forward tokens from its inputs to one of its two outputs alternately (top, bottom, top,...)

Distributed Counting -

Processors collectively assign successive values from a given range.

- like sorting networks: instead of comparators, consists of balancers
- balancers are asynchronous flip-flops that forward tokens from its inputs to one of its two outputs alternately (top, bottom, top,...)

Distributed Counting -

Processors collectively assign successive values from a given range.

- like sorting networks: instead of comparators, consists of balancers
- balancers are asynchronous flip-flops that forward tokens from its inputs to one of its two outputs alternately (top, bottom, top,...)

Distributed Counting -

Processors collectively assign successive values from a given range.

- like sorting networks: instead of comparators, consists of balancers
- balancers are asynchronous flip-flops that forward tokens from its inputs to one of its two outputs alternately (top, bottom, top,...)

Distributed Counting -

Processors collectively assign successive values from a given range.

- like sorting networks: instead of comparators, consists of balancers
- balancers are asynchronous flip-flops that forward tokens from its inputs to one of its two outputs alternately (top, bottom, top,...)

Distributed Counting -

Processors collectively assign successive values from a given range.

- like sorting networks: instead of comparators, consists of balancers
- balancers are asynchronous flip-flops that forward tokens from its inputs to one of its two outputs alternately (top, bottom, top,...)

Distributed Counting -

Processors collectively assign successive values from a given range.

- like sorting networks: instead of comparators, consists of balancers
- balancers are asynchronous flip-flops that forward tokens from its inputs to one of its two outputs alternately (top, bottom, top,...)

Distributed Counting -

Processors collectively assign successive values from a given range.

- like sorting networks: instead of comparators, consists of balancers
- balancers are asynchronous flip-flops that forward tokens from its inputs to one of its two outputs alternately (top, bottom, top,...)

Distributed Counting -

Processors collectively assign successive values from a given range.

- like sorting networks: instead of comparators, consists of balancers
- balancers are asynchronous flip-flops that forward tokens from its inputs to one of its two outputs alternately (top, bottom, top,...)

Counting Network

Distributed Counting —

Processors collectively assign successive values from a given range.

Smoothing Networks -

- like sorting networks: instead of comparators, consists of balancers
- balancers are asynchronous flip-flops that forward tokens from its inputs to one of its two outputs alternately (top, bottom, top,...)

Counting Network

Distributed Counting —

Processors collectively assign successive values from a given range.

Smoothing Networks -

- like sorting networks: instead of comparators, consists of balancers
- balancers are asynchronous flip-flops that forward tokens from its inputs to one of its two outputs alternately (top, bottom, top,...)

Counting Network

Distributed Counting -

Processors collectively assign successive values from a given range.

Smoothing Networks

- like sorting networks: instead of comparators, consists of balancers
- balancers are asynchronous flip-flops that forward tokens from its inputs to one of its two outputs alternately (top, bottom, top,...)

Counting Network (Formal Definition) -

- 1. Let *x*₁, *x*₂,..., *x_n* be the number of tokens (ever received) on the designated input wires
- 2. Let *y*₁, *y*₂,..., *y_n* be the number of tokens (ever received) on the designated output wires

Counting Network (Formal Definition)

- 1. Let *x*₁, *x*₂,..., *x_n* be the number of tokens (ever received) on the designated input wires
- 2. Let *y*₁, *y*₂,..., *y_n* be the number of tokens (ever received) on the designated output wires
- 3. In a quiescent state: $\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i$
- 4. A counting network is a smoothing network with the step-property:

$$0 \leq y_i - y_j \leq 1$$
 for any $i < j$.

Counting Network (Formal Definition)

- 1. Let *x*₁, *x*₂, . . . , *x_n* be the number of tokens (ever received) on the designated input wires
- 2. Let *y*₁, *y*₂, ..., *y_n* be the number of tokens (ever received) on the designated output wires
- 3. In a quiescent state: $\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i$
- 4. A counting network is a smoothing network with the step-property:

$$0 \leq y_i - y_j \leq 1$$
 for any $i < j$.

Bitonic Counting Network: Take Batcher's Sorting Network and replace each comparator by a balancer.

A Periodic Counting Network [Aspnes, Herlihy, Shavit '94]

From Counting to Sorting

- Counting vs. Sorting -

If a network is a counting network, then it is also a sorting network.

From Counting to Sorting

From Counting to Sorting

From Counting to Sorting

Observation

Any sorting network of depth *d* and *n* wires yields a sorting network of depth *d* and n - 1 wires.

From Counting to Sorting

Observation -

Any counting network must have $n = 2^k$ wires.

Observation -

Any counting network must have $n = 2^k$ wires.

Proof:

Observation

Any counting network must have $n = 2^k$ wires.

Proof:

Any output wire *y_i* can be expressed as:

$$y_i = \sum_{j=1}^n \frac{a_j}{2^\ell} x_j +$$
 "Rounding Error".

Observation

Any counting network must have $n = 2^k$ wires.

Proof:

Any output wire y_i can be expressed as:

$$y_i = \sum_{j=1}^n \frac{a_j}{2^\ell} x_j +$$
 "Rounding Error",

- where:
 - a_1, a_2, \ldots, a_n and ℓ are integers,
 - "Rounding Error" is at most the depth of the network

Observation

Any counting network must have $n = 2^k$ wires.

Proof:

Any output wire y_i can be expressed as:

$$y_i = \sum_{j=1}^n \frac{a_j}{2^\ell} x_j +$$
 "Rounding Error"

where:

- a_1, a_2, \ldots, a_n and ℓ are integers,
- "Rounding Error" is at most the depth of the network

 \Rightarrow necessary condition is that $\frac{a_j}{2^j} = \frac{1}{n}$

- Klugerman, Plaxton (1992) -

There exists a $O(\log n)$ -depth counting network.

An Optimal Counting Network

An Optimal Counting Network

Can we trade-off simplicity of network and initialization against smoothness?

Introduction

Sorting Networks

Counting Networks

Randomized Smoothing Networks

Stronger Notions of Smoothing Networks

Conclusion

Deterministic:

Each balancer must be oriented to a certain state

Deterministic:

Each balancer must be oriented to a certain state

Randomized:

Each balancer is oriented top or bottom uniformly at random

Deterministic:

Each balancer must be oriented to a certain state

Randomized:

Each balancer is oriented top or bottom uniformly at random

• Arbitrary:

Each balancer is oriented arbitrarily

- Deterministic: Each balancer must be oriented to a certain state
- Randomized:

Each balancer is oriented top or bottom uniformly at random

Arbitrary:

Each balancer is oriented arbitrarily

 Deterministic: Each balancer must be oriented to a certain state

Randomized:

Each balancer is oriented top or bottom uniformly at random

• Arbitrary: Each balancer is oriented arbitrarily

Randomized Initialization is a promising compromise:

- avoids need of global coordination
- achieves good discrepancy (=difference between maxload and minload)

Motivation .

- very simple recursive structure
- connects all inputs and outputs using minimum depth log₂ n
- corresponds to dimension exchange on hypercubes

Motivation .

- very simple recursive structure
- connects all inputs and outputs using minimum depth log₂ n
- corresponds to dimension exchange on hypercubes

Motivation .

- very simple recursive structure
- connects all inputs and outputs using minimum depth log₂ n
- corresponds to dimension exchange on hypercubes

Motivation .

- very simple recursive structure
- connects all inputs and outputs using minimum depth log₂ n
- corresponds to dimension exchange on hypercubes

Motivation .

- very simple recursive structure
- connects all inputs and outputs using minimum depth log₂ n
- corresponds to dimension exchange on hypercubes

Motivation .

- very simple recursive structure
- connects all inputs and outputs using minimum depth log₂ n
- corresponds to dimension exchange on hypercubes

Upper Bounds on the discrepancy for a single CCC

Randomized Initialization is a promising compromise:

- avoids need of global coordination
- achieves good discrepancy (=difference between maxload and minload)

Herlihy, Tirthapura, 2006

For any input the discrepancy is at most $\mathcal{O}(\sqrt{\log n})$ w.p. $1 - n^{-1}$.

Randomized Initialization is a promising compromise:

- avoids need of global coordination
- achieves good discrepancy (=difference between maxload and minload)

Herlihy, Tirthapura, 2006 -

For any input the discrepancy is at most $\mathcal{O}(\sqrt{\log n})$ w.p. $1 - n^{-1}$.

Mavronicolas, S., 2010 — For any input the discrepancy is at most $\log_2 \log_2 n + 4$ w.p. $1 - n^{-1}$.

Step 2: Expressing the Rounding Error

Step 2: Expressing the Rounding Error

with e_i^t being the rounding error,

Step 2: Expressing the Rounding Error

with e_i^t being the rounding error,

$$\boldsymbol{e}_i^t = \mathsf{Odd}(\boldsymbol{x}_i^{t-1} + \boldsymbol{x}_j^{t-1}) \cdot \boldsymbol{\Phi}_i^t,$$

where the $\Phi_i^t \in \{-1/2, +1/2\}$ is the (random) orientation.

Step 2: Expressing the Rounding Error

*Y*000

$$y_{000} = \frac{1}{2}y_{000}^2 + \frac{1}{2}y_{001}^2 + e_{000}^3$$

$$y_{000} = \frac{1}{2}x_{000}^2 + \frac{1}{2}x_{001}^2 + e_{000}^3$$

= $\frac{1}{4}y_{000}^1 + \frac{1}{4}y_{001}^1 + \frac{1}{4}y_{001}^1 + \frac{1}{4}y_{011}^1 + e_{000}^3 + \frac{1}{2}e_{000}^2 + \frac{1}{2}e_{001}^2$

$$y_{000} = \frac{1}{8}x_{000} + \frac{1}{8}x_{100} + \frac{1}{8}x_{010} + \frac{1}{8}x_{110} + \frac{1}{8}x_{001} + \frac{1}{8}x_{101} + \frac{1}{8}x_{011} + \frac{1}{8}x_{111} + \frac{1}{8}x_{111} + \frac{1}{8}x_{010} + \frac{1}{2}e_{000}^2 + \frac{1}{2}e_{001}^2 + \frac{1}{4}e_{010}^1 + \frac{1}{4}e_{010}^1 + \frac{1}{4}e_{011}^1 + \frac{1}{4}e_{011}^1$$

continuous part and discrete part

A Survey on Smoothing Networks

$$y_{000} = \frac{1}{8}x_{000} + \frac{1}{8}x_{100} + \frac{1}{8}x_{010} + \frac{1}{8}x_{110} + \frac{1}{8}x_{001} + \frac{1}{8}x_{101} + \frac{1}{8}x_{011} + \frac{1}{8}x_{111} + \frac{1}{8}x_{111} + \frac{1}{8}x_{010} + \frac{1}{2}e_{000}^2 + \frac{1}{2}e_{001}^2 + \frac{1}{4}e_{010}^1 + \frac{1}{4}e_{010}^1 + \frac{1}{4}e_{011}^1 + \frac{1}{4}e_{011}^1$$

- continuous part and discrete part
- continuous part equals the average load

A Survey on Smoothing Networks

$$y_{000} = \frac{1}{8}x_{000} + \frac{1}{8}x_{100} + \frac{1}{8}x_{010} + \frac{1}{8}x_{110} + \frac{1}{8}x_{001} + \frac{1}{8}x_{101} + \frac{1}{8}x_{011} + \frac{1}{8}x_{111} + \frac{1}{8}x_{011} + \frac{1}{8}x_{01} + \frac{1}{8}x_{01} + \frac{1}{8}x_{01} + \frac{1}{8}x_{01}$$

- continuous part and discrete part
- continuous part equals the average load
- \Rightarrow loads are divisible, then perfectly balanced

A Survey on Smoothing Networks

Step 4: Handling the Deviation

$$y_{000} = \frac{1}{8}x_{000} + \frac{1}{8}x_{100} + \frac{1}{8}x_{010} + \frac{1}{8}x_{110} + \frac{1}{8}x_{001} + \frac{1}{8}x_{101} + \frac{1}{8}x_{011} + \frac{1}{8}x_{011} + \frac{1}{8}x_{111} + \frac{1}{8}x_{011} + \frac{1}{8}x_{01} + \frac{1}{8}x_{01} + \frac{1}{8}x_{01} + \frac{1}{8}x_{01}$$

Step 4: Handling the Deviation

$$y_{000} = \frac{1}{8}x_{000} + \frac{1}{8}x_{100} + \frac{1}{8}x_{010} + \frac{1}{8}x_{110} + \frac{1}{8}x_{001} + \frac{1}{8}x_{101} + \frac{1}{8}x_{011} + \frac{1}{8}x_{111} + \frac{1}{8}x_{111} + \frac{1}{8}x_{010} + \frac{1}{2}e_{000}^2 + \frac{1}{2}e_{001}^2 + \frac{1}{4}e_{000}^1 + \frac{1}{4}e_{010}^1 + \frac{1}{4}e_{001}^1 + \frac{1}{4}e_{011}^1$$

Divide rounding errors into two groups:

$$y_{000} = \frac{1}{8}x_{000} + \frac{1}{8}x_{100} + \frac{1}{8}x_{010} + \frac{1}{8}x_{110} + \frac{1}{8}x_{001} + \frac{1}{8}x_{101} + \frac{1}{8}x_{011} + \frac{1}{8}x_{111} + \frac{1}{8}x_{111} + \frac{1}{8}x_{010} + \frac{1}{2}e_{000}^2 + \frac{1}{2}e_{001}^2 + \frac{1}{4}e_{000}^1 + \frac{1}{4}e_{010}^1 + \frac{1}{4}e_{001}^1 + \frac{1}{4}e_{011}^1$$

- Divide rounding errors into two groups:
 - 1. Layers $1, \ldots, \log_2 n \log_2 \log_2 n$
 - 2. Layers $\log_2 n \log_2 \log_2 n + 1, \dots, \log_2 n$

Step 4: Handling the Deviation

$$y_{000} = \frac{1}{8}x_{000} + \frac{1}{8}x_{100} + \frac{1}{8}x_{010} + \frac{1}{8}x_{110} + \frac{1}{8}x_{001} + \frac{1}{8}x_{101} + \frac{1}{8}x_{011} + \frac{1}{8}x_{111} + e_{000}^3 + \frac{1}{2}e_{000}^2 + \frac{1}{2}e_{001}^2 + \frac{1}{4}e_{000}^1 + \frac{1}{4}e_{010}^1 + \frac{1}{4}e_{011}^1 + \frac{1}{$$

$$y_{000} = \frac{1}{8}x_{000} + \frac{1}{8}x_{100} + \frac{1}{8}x_{010} + \frac{1}{8}x_{110} + \frac{1}{8}x_{001} + \frac{1}{8}x_{101} + \frac{1}{8}x_{011} + \frac{1}{8}x_{111} + e_{000}^3 + \frac{1}{2}e_{000}^2 + \frac{1}{2}e_{001}^2 + \frac{1}{4}e_{000}^1 + \frac{1}{4}e_{011}^1 + \frac{1}{$$

$$y_{000} = \frac{1}{8}x_{000} + \frac{1}{8}x_{100} + \frac{1}{8}x_{010} + \frac{1}{8}x_{110} + \frac{1}{8}x_{001} + \frac{1}{8}x_{101} + \frac{1}{8}x_{011} + \frac{1}{8}x_{111} + \frac{1}{8}x_{011} + \frac{1}{8}x_{111} + \frac{1}{8}x_{010} + \frac{1}{2}e_{000}^2 + \frac{1}{2}e_{001}^2 + \frac{1}{4}e_{000}^1 + \frac{1}{4}e_{010}^1 + \frac{1}{4}e_{001}^1 + \frac{1}{4}e_{011}^1 + \frac{1}{8}x_{011} +$$

- Divide rounding errors into two groups:
 - 1. Layers $1, \ldots, \log_2 n \log_2 \log_2 n$
 - 2. Layers $\log_2 n \log_2 \log_2 n + 1, ..., \log_2 n$
- Chernoff \Rightarrow first group contributes \leq 2
- trivial bound \Rightarrow second group contributes $\frac{1}{2} \log_2 \log_2 n$

$$y_{000} = \frac{1}{8}x_{000} + \frac{1}{8}x_{100} + \frac{1}{8}x_{010} + \frac{1}{8}x_{110} + \frac{1}{8}x_{001} + \frac{1}{8}x_{101} + \frac{1}{8}x_{011} + \frac{1}{8}x_{111} + \frac{1}{8}x_{011} + \frac{1}{8}x_{111} + \frac{1}{8}x_{010} + \frac{1}{2}e_{000}^2 + \frac{1}{2}e_{001}^2 + \frac{1}{4}e_{000}^1 + \frac{1}{4}e_{010}^1 + \frac{1}{4}e_{001}^1 + \frac{1}{4}e_{011}^1 + \frac{1}$$

- Divide rounding errors into two groups:
 - 1. Layers $1, \ldots, \log_2 n \log_2 \log_2 n$
 - 2. Layers $\log_2 n \log_2 \log_2 n + 1, ..., \log_2 n$
- Chernoff \Rightarrow first group contributes \leq 2
- trivial bound \Rightarrow second group contributes $\frac{1}{2} \log_2 \log_2 n$

 \Rightarrow discrepancy is at most $\log_2 \log_2 n + 4$

X1→	[1	<i>⊳y</i> 1
		CCC(log ₂ n)	
	1	2222	
	1		
	1		
	1	CCC(n)	
	1	CCC(n)	
	1		
		100	
1	1	log	211

- Upper Bound (Mavronicolas, S., 2010) -

For any input the discrepancy is at most $\log_2 \log_2 n + 4$ w.p. $1 - n^{-1}$.

- Upper Bound (Mavronicolas, S., 2010) -

For any input the discrepancy is at most $\log_2 \log_2 n + 4$ w.p. $1 - n^{-1}$.

Lower Bound (Mavronicolas, S., 2010) -

For some inputs the discrepancy is at least $\log_2 \log_2 n - 2$ w.p. $1 - n^{-1}$.

Input for lower bound look contrived, so what about random inputs?

Input for lower bound look contrived, so what about random inputs?

Average-Case Model ____

Assume number of tokens at each input wire is $\sim Uni[0, \log_2 n - 1]$.

For this input, discrepancy is at least $(1/2 - o(1)) \log_2 \log_2 n$ w.p. 1 - o(1).

Input for lower bound look contrived, so what about random inputs?

Average-Case Mod One can prove that the range $[0, \log_2 n - 1]$ is canonical.

Assume number of tokens at each input wire is $\sim Uni[0, \log_2 n - 1]$.

Friedrich, Vilenchik, S.'11

For this input, discrepancy is at least $(1/2 - o(1)) \log_2 \log_2 n$ w.p. 1 - o(1).

"Magic Property":

 All rounding errors become independent(!) random variables

$$-1/2$$
 with probability $1/4$

with probability
$$1/2$$

$$+1/2$$
 with probability $1/4$

Mavronicolas, S., 2010

For any input to the CCC, the discrepancy is $\log_2 \log_2 n \pm O(1)$.

Mavronicolas, S., 2010

For any input to the CCC, the discrepancy is $\log_2 \log_2 n \pm O(1)$.

What happens if we take the cascade of two or more CCC's?

For any input to the CCC, the discrepancy is $\log_2 \log_2 n \pm O(1)$.

What happens if we take the cascade of two or more CCC's?

Mavronicolas, S., 2010

For any input the discrepancy is at most >6 3 w.p. $1 - n^{-1}$.

For any input to the CCC, the discrepancy is $\log_2 \log_2 n \pm O(1)$.

What happens if we take the cascade of two or more CCC's?

Introduction

Sorting Networks

Counting Networks

Randomized Smoothing Networks

Stronger Notions of Smoothing Networks

Conclusion

A (More) "Universal" Model

(Standard) Smoothing Network -

- deterministic initialization: input arbitrary
- random initialization: input arbitrary, but without knowing initialization

A (More) "Universal" Model

A (More) "Universal" Model

Universal Randomized Smoothing Network -

 random initialization: input arbitrary with knowledge of initialization

A (More) "Universal" Model

- Lower Bound (Mavronicolas, S.'10)

For any initialisation of the CCC, there exists an input so that the discrepancy is at least $(1/4) \log_2 n$.

- Lower Bound (Mavronicolas, S.'10)

For any initialisation of the CCC, there exists an input so that the discrepancy is at least $(1/4) \log_2 n$.

Is the cascade of two (or more) CCC's a universal smoothing network?

Lower Bound (Mavronicolas, S.'10)

For any initialisation of the CCC, there exists an input so that the discrepancy is at least $(1/4) \log_2 n$.

- Lower Bound (Mavronicolas, S.'10)

For any initialisation of the CCC, there exists an input so that the discrepancy is at least $(1/4) \log_2 n$.

Conjecture (Kosowski, S.) -

There is a constant $\epsilon > 0$, so that cascading $\Theta(\text{polylog}(n))$ CCC's achieves a discrepancy of at most $O((\log n)^{1-\epsilon})$.

"Doubly" Adversarial Model -----

 input and initialisation controlled by an adversary

Observation -

One CCC achieves discrepancy of $\log_2 n$ for any input and initialisation.

Observation -

One CCC achieves discrepancy of $\log_2 n$ for any input and initialisation.

Conjecture (Kosowski, S., 2016) -----

Take the cascade of O(polylog(n)) random perfect matchings. Then the discrepancy is at most $O(\log n / \log \log n)$.

Observation -

One CCC achieves discrepancy of $\log_2 n$ for any input and initialisation.

Conjecture (Kosowski, S., 2016) -----

Take the cascade of O(polylog(n)) random perfect matchings. Then the discrepancy is at most $O(\log n / \log \log n)$.

Lower Bound

For any universal smoothing network of depth *d*, there is an input so that the discrepancy is at least $\frac{\log n}{\log d}$.

Observation -

One CCC achieves discrepancy of $\log_2 n$ for any input and initialisation.

- Conjecture (Kosowski, S., 2016) —

Take the cascade of O(polylog(n)) random perfect matchings. Then the discrepancy is at most $O(\log n / \log \log n)$.

Lower Bound

For any universal smoothing network of depth *d*, there is an input so that the discrepancy is at least $\frac{\log n}{\log d}$.

♠

Lemma

For any graph with maxdegree Δ , diam(*G*) $\geq \log n/(\log \Delta)$.

Observation -

One CCC achieves discrepancy of $\log_2 n$ for any input and initialisation.

Conjecture (Kosowski, S., 2016) -

Take the cascade of O(polylog(n)) random perfect matchings. Then the discrepancy is at most $O(\log n / \log \log n)$.

Lower Bound

For any universal smoothing network of depth *d*, there is an input so that the discrepancy is at least $\frac{\log n}{\log d}$.

♠

Lemma

For any graph with maxdegree Δ , diam(*G*) $\geq \log n/(\log \Delta)$.

One can reach at most Δ^k vertices from any node in *k* hops.

Introduction

Sorting Networks

Counting Networks

Randomized Smoothing Networks

Stronger Notions of Smoothing Networks

Conclusion

Summary

Model / Discrepancy	1	2	$(\log n)^{1-\epsilon}$	log n log log n	log n
Counting	$\Theta(\log n)$	\checkmark	\checkmark	\checkmark	\checkmark
Random Smoothing	Ω(<i>n</i>)	O(log n)	\checkmark	\checkmark	\checkmark
Random Universal	??	??	O(polylog(n))	\checkmark	log n
Adversarial	∞	Ω(<i>n</i>)	$\Omega(2^{(\log n)^{1-\epsilon}})$	$O(\operatorname{polylog}(n))$	log n

Summary

Model / Discrepancy	1	2	$(\log n)^{1-\epsilon}$	log n log log n	log n
Counting	$\Theta(\log n)$	\checkmark	\checkmark	\checkmark	\checkmark
Random Smoothing	Ω(<i>n</i>)	O(log n)	\checkmark	\checkmark	\checkmark
Random Universal	??	??	O(polylog(n))	\checkmark	log n
Adversarial	∞	Ω(<i>n</i>)	$\Omega(2^{(\log n)^{1-\epsilon}})$	$O(\operatorname{polylog}(n))$	log n

Random Smoothing on Arbitrary Graphs (Sun, S.'12)

For arbitrary graphs, one can achieve a constant discrepancy in $\Theta(\log(Kn)/(1-\lambda_2))$ rounds, where *K* is the initial discrepancy and $1-\lambda_2$ is the spectral gap.

Summary

Model / Discrepancy	1	2	$(\log n)^{1-\epsilon}$	log n log log n	log n
Counting	$\Theta(\log n)$	\checkmark	\checkmark	\checkmark	\checkmark
Random Smoothing	Ω(<i>n</i>)	O(log n)	\checkmark	\checkmark	\checkmark
Random Universal	??	??	O(polylog(n))	\checkmark	log n
Adversarial	∞	Ω(<i>n</i>)	$\Omega(2^{(\log n)^{1-\epsilon}})$	$O(\operatorname{polylog}(n))$	log n

Random Smoothing on Arbitrary Graphs (Sun, S.'12)

For arbitrary graphs, one can achieve a constant discrepancy in $\Theta(\log(Kn)/(1-\lambda_2))$ rounds, where *K* is the initial discrepancy and $1-\lambda_2$ is the spectral gap.

- random smoothing networks appear to be relatively well-understood
- first results in the universal/adversarial model are sketchy, but hint at an interesting landscape

