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Agenda (and disclaimer...)

Goal: Design smoothing networks for asynchronous load balancing

+ simple and elegant constructions
+ networks will be super-efficient - pre-specified static networks
+ interesting mathematical theory - may not even work for any n
+ extremely sharp and tight results
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Sorting Networks

Sorting Network

= A sorting network consists solely of wires and comparators:
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= comparator is a device with, on given two inputs, x and y, returns two
outputs x’ = min(x, y) and y’ = max(x, y)
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= A sorting network consists solely of wires and comparators:

= comparator is a device with, on given two inputs, x and y, returns two
outputs x’ = min(x, y) and y’ = max(x, y)
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= A sorting network consists solely of wires and comparators:
= comparator is a device with, on given two inputs, x and y, returns two
outputs x’ = min(x, y) and y’ = max(x, y)
= wires connect output of one comparator to the input of another
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Sorting Networks
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= A sorting network consists solely of wires and comparators:

= comparator is a device with, on given two inputs, x and y, returns two
outputs x’ = min(x, y) and y’ = max(x, y)
= wires connect output of one comparator to the input of another

= special wires: n input wires xq, X, . . utput wires yy, ya, ...

»Yn
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Sorting Networks
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Sorting Network

= A sorting network consists solely of wires and comparators:
= comparator is a device with, on given two inputs, x and y, returns two
outputs x’ = min(x, y) and y’ = max(x, y)
= wires connect output of one comparator to the input of another

= special wires: n input wires xy, Xo, ..., Xp @and n output wires yq, Yo, ..., ¥n
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Batcher’s Sorting Network

| SorteR[n/2]

MERGER|[n]

| SorteR[n/2]
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Batcher’s Sorting Network
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Batcher’s Sorting Network

o [ [ MERGER[2] [ [

"] Sorter [n/2] [ MERGER[4] [ [

] [ [ MERGER[2] [ [
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1 0 0 0

041 1 Lo L o Recursionfor D(n):

1 0 1 0

0t L 1 Lo 0 itn=1,
|0 0 o D(n)= : p
0 Il il I D(n/2) +logn if n= 2",
0 (4] I (4] 1 . 5

a0 1 - Solution: D(n) = ©(log? n).

depth 1 2 2 3 4 4 4 4556
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Batcher’s Sorting Network
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] [ [ MERGER[2] [ [
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: : : MERGER[2] : :

1 0 0 0

041 1 Lo L o Recursionfor D(n):

1 0 1 0

0t L 1 Lo 0 itn=1,
|0 0 o D(n)= : p
0 Il il I D(n/2) +logn if n= 2",
0 (4] I (4] 1 . 5

a0 1 - Solution: D(n) = ©(log? n).

depth 1 2 2 3 4 4 4 4556

Batcher’s sorting network has depth ©(log? n).
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Periodic Balanced Sorting Network [Dowd, Perl, Rudolph, Saks’89]
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Periodic Balanced Sorting Network [Dowd, Perl, Rudolph, Saks’89]

Consists of log, n BLOCK[n] networks each of which has depth log, n

Sorting Networks
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Optimal Sorting Network

——— O(log? n) sorting networks

* 1log? n depth: Batcher's Sorting Network
= log? n depth: Periodic Balanced Sorting Network
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Optimal Sorting Network

——— O(log? n) sorting networks

* 1log? n depth: Batcher's Sorting Network
= log? n depth: Periodic Balanced Sorting Network

Can we construct sorting networks of depth O(log n)?
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Optimal Sorting Network

——— O(log? n) sorting networks

* 1log? n depth: Batcher's Sorting Network
= log? n depth: Periodic Balanced Sorting Network

Can we construct sorting networks of depth O(log n)?

Ajtai, Komlds, Szemerédi (1983)
| There exists a sorting network with depth O(log n).
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Optimal Sorting Network

——— O(log? n) sorting networks

* 1log? n depth: Batcher's Sorting Network
= log? n depth: Periodic Balanced Sorting Network

Can we construct sorting networks of depth O(log n)?

Ajtai, Komlds, Szemerédi (1983)
| There exists a sorting network with depth O(log n). ]
O

Extremely sophisticated construction that uses
expander graphs and involves huges constants.
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AKS network vs. Batcher’s network

Donald E. Knuth (Stanford) Richard J. Lipton (Georgia Tech)

“Batcher's method is much “The AKS sorting network is

better, unless n exceeds the galactic: it needs that n be

78 i
total memory capacity of all Lar ger ﬁl,/anti ogs;) ;70 f/’na/ ly
computers on earth!” ¢ smaller than Baichers

network for n items.”
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From Sorting Networks to Counting Networks

Sorting Networks comparator
7

= sorts any input of size n — < | <

= special case of Comparison Networks

2] > |7
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From Sorting Networks to Counting Networks

Sorting Networks

= sorts any input of size n
= special case of Comparison Networks

Counting Networks

= balances any stream of tokens over n wires
= special case of Smoothing Networks

comparator

L] P <

2| > |7
balancer

7 S
4~
518

2 | 4
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Counting Network

Distributed Counting

Processors collectively assign successive values from a given range.
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Counting Network

Distributed Counting

Processors collectively assign successive values from a given range.
ANN

Values could represent addresses in memories
or destinations on an interconnection network
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Counting Network

Distributed Counting

Processors collectively assign successive values from a given range.

Smoothing Networks

= like sorting networks: instead of comparators, consists of balancers

= balancers are asynchronous flip-flops that forward tokens from its
inputs to one of its two outputs alternately (top, bottom, top,. . .)
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Counting Network

Distributed Counting

Processors collectively assign successive values from a given range.

Smoothing Networks

= like sorting networks: instead of comparators, consists of balancers

= balancers are asynchronous flip-flops that forward tokens from its
inputs to one of its two outputs alternately (top, bottom, top,. . .)
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Counting Network

Distributed Counting

Processors collectively assign successive values from a given range.
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= like sorting networks: instead of comparators, consists of balancers
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inputs to one of its two outputs alternately (top, bottom, top,. . .)
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Counting Network

Distributed Counting
Processors collectively assign successive values from a given range.

Smoothing Networks
= like sorting networks: instead of comparators, consists of balancers

= balancers are asynchronous flip-flops that forward tokens from its
inputs to one of its two outputs alternately (top, bottom, top,. . .)
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Counting Network

Distributed Counting

Processors collectively assign successive values from a given range.

Smoothing Networks

= like sorting networks: instead of comparators, consists of balancers

= balancers are asynchronous flip-flops that forward tokens from its
inputs to one of its two outputs alternately (top, bottom, top,. . .)
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Counting Network

Distributed Counting

Processors collectively assign successive values from a given range.

Smoothing Networks

= like sorting networks: instead of comparators, consists of balancers

= balancers are asynchronous flip-flops that forward tokens from its
inputs to one of its two outputs alternately (top, bottom, top,. . .)
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Counting Network

Distributed Counting

Processors collectively assign successive values from a given range.

Smoothing Networks
= like sorting networks: instead of comparators, consists of balancers

= balancers are asynchronous flip-flops that forward tokens from its
inputs to one of its two outputs alternately (top, bottom, top,. . .)

© O

[Number of tokens differs by at most one]
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Counting Network

Distributed Counting

Processors collectively assign successive values from a given range.

Smoothing Networks

= like sorting networks: instead of comparators, consists of balancers

= balancers are asynchronous flip-flops that forward tokens from its
inputs to one of its two outputs alternately (top, bottom, top,. . .)
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Bitonic Counting Network

~——— Counting Network (Formal Definition)

1. Let xy, X2, . . ., X, be the number of tokens (ever received) on the
designated input wires

2. Let w1, 2, ..., ¥n be the number of tokens (ever received) on the
designated output wires
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Bitonic Counting Network

~——— Counting Network (Formal Definition)

1. Let xy, X2, . . ., X, be the number of tokens (ever received) on the
designated input wires

2. Let w1, 2, ..., ¥n be the number of tokens (ever received) on the
designated output wires

3. Inaquiescent state: 37, x; = Y1, Vi

0<y—y <tiforanyi<]j.

4. A counting network is a smoothing network with the step-property:
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Bitonic Counting Network

~——— Counting Network (Formal Definition)

1. Let xy, X2, . . ., X, be the number of tokens (ever received) on the
designated input wires

2. Let w1, 2, ..., ¥n be the number of tokens (ever received) on the
designated output wires

3. Inaquiescent state: 37, x; = Y1, Vi
4. A counting network is a smoothing network with the step-property:

0<y—y <tiforanyi<]j.

Bitonic Counting Network: Take Batcher’s Sorting Network and replace
each comparator by a balancer.

i
A Survey on Smoothing Networks Counting Networks



Asynchronous Execution on the Bitonic Counting Network
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Asynchronous Execution on the Bitonic Counting Network
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Asynchronous Execution on the Bitonic Counting Network

X1
X2 2
X3 1
X4

7

)2

0%

Ya

A Survey on Smoothing Networks

Counting Networks



Asynchronous Execution on the Bitonic Counting Network

X1

X2

@ »

X4

7

)2

0%

Ya

i
A Survey on Smoothing Networks

Counting Networks



Asynchronous Execution on the Bitonic Counting Network
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Asynchronous Execution on the Bitonic Counting Network
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Asynchronous Execution on the Bitonic Counting Network
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Asynchronous Execution on the Bitonic Counting Network
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Asynchronous Execution on the Bitonic Counting Network
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Asynchronous Execution on the Bitonic Counting Network
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Asynchronous Execution on the Bitonic Counting Network
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Asynchronous Execution on the Bitonic Counting Network
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Asynchronous Execution on the Bitonic Counting Network
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Asynchronous Execution on the Bitonic Counting Network
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Asynchronous Execution on the Bitonic Counting Network
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Asynchronous Execution on the Bitonic Counting Network

X1@

X2

X3

——— )2

{2 }—}\,7 7
O—
'}
A

0%

X4 4ﬁ—@ )

Ya

A Survey on Smoothing Networks

Counting Networks



Asynchronous Execution on the Bitonic Counting Network
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Asynchronous Execution on the Bitonic Counting Network
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Asynchronous Execution on the Bitonic Counting Network
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Asynchronous Execution on the Bitonic Counting Network
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Asynchronous Execution on the Bitonic Counting Network
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Asynchronous Execution on the Bitonic Counting Network
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Asynchronous Execution on the Bitonic Counting Network
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Asynchronous Execution on the Bitonic Counting Network
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Asynchronous Execution on the Bitonic Counting Network

g 3 —n © ®
. v @ ®

y
X A A MO,
Xa b ve (@)
-

Counting can be done as follows:
Add local counter to each output wire /, to
assign consecutive numbers i, i+ n,i+2-n,...
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A Periodic Counting Network [Aspnes, Herlihy, Shavit 94]
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A Periodic Counting Network [Aspnes, Herlihy, Shavit 94]

Consists of log n BLOCK[n] networks each of which has depth log n

15

Counting Networks
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From Counting to Sorting

Counting vs. Sorting
| If a network is a counting network, then it is also a sorting network.
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From Counting to Sorting

Counting vs. Sorting
| If a network is a counting network, then it is also a sorting network.

\

[the converse is not true!]
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From Counting to Sorting

Counting vs. Sorting
| If a network is a counting network, then it is also a sorting network.

A\
[the converse is not true!j

X1 N
X2 Y2
X3 Y3

© Ox ya
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From Counting to Sorting

Counting vs. Sorting
[:network is a counting network, then it is also a sorting network. ]
A\
[the converse is not true!j

X1 N
X2 Y2
X3 Y3

© Ox ya

Observation

Any sorting network of depth d and n wires yields a sorting network of
depth d and n — 1 wires.
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From Counting to Sorting

Counting vs. Sorting
| If a network is a counting network, then it is also a sorting network.

A\
[the converse is not true!j

X1 N
X2 Y2
X3 Y3

© Ox ya

Observation

Any sorting network of depth d and n wires yields a sorting network of
depth d and n — 1 wires.

S\
A\

[Simply delete the bottom wire!]
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Necessary Conditions for Counting Networks

Observation
| Any counting network must have n = 2¥ wires.
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Necessary Conditions for Counting Networks

Observation
| Any counting network must have n = 2¥ wires.

Proof:
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Necessary Conditions for Counting Networks

Observation
| Any counting network must have n = 2¥ wires. ]

Proof:

= Any output wire y; can be expressed as:

n .

a
= Z 2_2)(1- +‘ “Rounding Error” |,

=1
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Necessary Conditions for Counting Networks

Observation
| Any counting network must have n = 2¥ wires.

Proof:
= Any output wire y; can be expressed as:

n

a
y = Z —/xj +‘ “Rounding Error” |,

2L

=1

= where:
" a4,a,...,apand ¢ are integers,

= | “Rounding Error” | is at most the depth of the network
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Necessary Conditions for Counting Networks

Observation
| Any counting network must have n = 2¥ wires.

Proof:
= Any output wire y; can be expressed as:

n .

a
= Z 2_2)(1- +‘ “Rounding Error” |,

=1

= where:
" a4,a,...,apand ¢ are integers,

= | “Rounding Error” | is at most the depth of the network

iy . aj
= necessary condition is that 2 = 1

i
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An Optimal Counting Network

Klugerman, Plaxton (1992)
| There exists a O(log n)-depth counting network.

i
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An Optimal Counting Network

Klugerman, Plaxton (1992)
| There exists a O(log n)-depth counting network.
N

A\

[uses AKS network as a building bIock!]
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An Optimal Counting Network

Requires specific initialization of all balancers!]

Klugerman, Plaxton (1992) —

| There exists a O(log n)-depth counting network. ]

N
A\

[uses AKS network as a building bIock!]
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An Optimal Counting Network

Requires specific initialization of all balancers!]

Klugerman, Plaxton (1992) —

| There exists a O(log n)-depth counting network. ]

N
A\

[uses AKS network as a building bIock!]

Can we trade-off simplicity of network and initialization against smoothness?

s A Survey on Smoothing Networks Counting Networks 18



Outline

Randomized Smoothing Networks

s
e r

A Survey on Smoothing Networks

Randomized Smoothing Networks



Landscape

Sorting Networks

Counting Networks

Smoothing Networks
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How to Initialize The Balancers?

= Deterministic:
Each balancer must be oriented to a certain state
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= Deterministic:
Each balancer must be oriented to a certain state
= Randomized:

Each balancer is oriented top or bottom uniformly
at random
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How to Initialize The Balancers?

= Deterministic:
Each balancer must be oriented to a certain state

= Randomized:
Each balancer is oriented top or bottom uniformly
at random

= Arbitrary:
Each balancer is oriented arbitrarily
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How to Initialize The Balancers?

= Deterministic:

Each balancer must be oriented to a certain state

= Randomized:

Each balancer is oriented top or bottom uniformly

at random

= Arbitrary:
Each balancer is oriented arbitrarily

strong assumption
small discrepancy

weak assumption
large discrepancy
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How to Initialize The Balancers?

= Deterministic:

Each balancer must be oriented to a certain state

= Randomized:

Each balancer is oriented top or bottom uniformly

at random

= Arbitrary:
Each balancer is oriented arbitrarily

Randomized Initialization is a promising compromise:

= avoids need of global coordination

= achieves good discrepancy (=difference between

maxload and minload)

strong assumption
small discrepancy

weak assumption
large discrepancy

i
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The CCC (Cube-Connected-Cycles) Smoothing Network

£
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011
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The CCC (Cube-Connected-Cycles) Smoothing Network

Motivation

Why this network?
= very simple recursive structure
= connects all inputs and outputs using minimum depth log, n
= corresponds to dimension exchange on hypercubes
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The CCC (Cube-Connected-Cycles) Smoothing Network

Motivation

Why this network?
= very simple recursive structure
= connects all inputs and outputs using minimum depth log, n
= corresponds to dimension exchange on hypercubes

000

001 — o
010 ———»
011 ————»
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111 .
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The CCC (Cube-Connected-Cycles) Smoothing Network

Motivation

Why this network?
= very simple recursive structure
= connects all inputs and outputs using minimum depth log, n
= corresponds to dimension exchange on hypercubes

000 4

001 ——o—
010 o~ —o —
011 .

100 4

101 ——o—
110 *~— —o—
111 o
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The CCC (Cube-Connected-Cycles) Smoothing Network

Motivation

Why this network?
= very simple recursive structure
= connects all inputs and outputs using minimum depth log, n
= corresponds to dimension exchange on hypercubes
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The CCC (Cube-Connected-Cycles) Smoothing Network

Motivation
Why this network?
= very simple recursive structure
= connects all inputs and outputs using minimum depth log, n
= corresponds to dimension exchange on hypercubes

000
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011
100
101
110
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Upper Bounds on the discrepancy for a single CCC

Randomized Initialization is a promising compromise: /555
= avoids need of global coordination V"Q\

= achieves good discrepancy (=difference between
maxload and minload)

Herlihy, Tirthapura, 2006
‘ For any input the discrepancy is at most O(y/logn) w.p. 1 —n~".

1
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Upper Bounds on the discrepancy for a single CCC

Randomized Initialization is a promising compromise: /555
* avoids need of global coordination V"Q\ )‘5/\0
. . . ~2/c
= achieves good discrepancy (=difference between \04
maxload and minload) N L‘oc
d/c
Herlihy, Tirthapura, 2006 N\
‘ For any input the discrepancy is at most O(+/logn) w.p. 1 — n~".
Mavronicolas, S., 2010 N
| For any input the discrepancy is at most log, log, n+ 4 w.p. 1 — n'.
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Step 1: The Continuous Case (Expected Case)

X1 Py
X2 l
X3 ®
X4 l
X5 ®
X6 l
X7 L 2
Xg l
X9 ®
X10 l
X11 I
Xq2 ®
X13 Py
X14 l
Xi5 ®
X16 l
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Step 1: The Continuous Case (Expected Case)

X1 5 2.5 .
Xo 2 2 l
X3 4 3.5 .
X4 2 3 l
X5 3 2.5 .
X6 1 1.5 l
pa 1 3.5 .
‘o 2 15 l
Xo 0 2.5 I
X10 2 2 ®
X1 3 3.5 I
X12 4 3 e
X3 2 2.5 T
Xuq 2 1.5 °
X1s 6 3.5 I
X6 1 1.5 I
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Step 1: The Continuous Case (Expected Case)

v 5 25 25 .
:

o 2 2 1.75 |
x5 35 35 .
x5 2 3 2.25 |
x5 3 25 25 .
xg 1 15 1.75 |
o 35 35 .
xg 2 15 2.25 |
xg 0 25 25 I
X1y 2 2 1.75 .
Xy 3 35 35 I
xip 3 2.25 .
x5 2 25 25 I
xia 2 15 1.75 .
x5 6 35 35 I
xig 1 1.5 2.25 .
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Step 1: The Continuous Case (Expected Case)

X 5 25 25 3 .
o 2 2 1.75 2 l
x5 35 35 3 .
s 2 3 2.25 2 l
x5 3 25 25 3 .
x5 ] 15 1.75 2 l
o 35 35 3 .
xg 2 15 2.25 2 l
%o 0 25 25 3 .
Xy 2 2 1.75 2 l
Xy 3 35 35 3 .
Xy 4 3 2.25 2 l
xip 2 25 25 3 .
xpa 2 15 1.75 2 l
x5 8 35 35 3 .
xg 1 1.5 2.25 2 l
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Step 1: The Continuous Case (Expected Case)
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Step 2: Expressing the Rounding Error

! /
. X,‘t—1 +Xit—1
Xi =
2
x4 X!
t ! ]
X = —

i
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Step 2: Expressing the Rounding Error

i Ji i
. X,.t_1 + Xit_1 r
Xj = > + €
r Xit—1 + ij—1 t
Xj = > e,

with e/ being the rounding error,
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Step 2: Expressing the Rounding Error

i Ji i
. X,-t_1 + Xit_1 r
Xi = > e
r Xit—1 + ij—1 t
Xj = > e,

with e/ being the rounding error,
el = 0dd(x/ ' +x") - ¢,

where the ¢! € {—1/2,+1/2} is the (random) orientation.
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Step 2: Expressing the Rounding Error

Oe—) - ---------- > Ore— )
I J i J
r X1 g Xt r
Xi = > (H
r X1y ij—1 r
Xj = > e,

with e! being the rounding error,

el = Odd(x'~" + xI=") - !

where| ef ¢ {—1/2,0,1/2} and E [e!] = 0.
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Step 3: Solving the Recursion

Yooo
000
layer
A
T 7
3
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Step 3: Solving the Recursion

1 1
Yooo = Eygoo + Eygm + €500

000
000

001

layer

Il Il
T — 7
2 3
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Step 3: Solving the Recursion

1 1
Yooo = Exgoo + §X§o1 + €500

:ly1 +ly1 +ly1 +ly1 + el +le2 +le2
77000 * 7Yoot 7 Y001 T 7 Yo11 o005 €000 + 5 €001

layer
1 1 N
T T T 7
o 1 2 3
S
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Step 3: Solving the Recursion

14 14 14 14 3 12 1e2
Yooo = Z}’oooJFZyom JrZ}’oo1 + 7701 + €0 + Eeooo+§ 001
1 1

1 1 1 1 1 1
) 0 0 0 ) 0 0 0
= + W0+ =0 + = Vo1 + = V01 + =¥ + =
8}’ooo 8y1oo 8y010 8y110 8YO01 8}’101 8}’011 8Y111
1 1 1 1 1
3 2 1 1 1 1
+ €00 + 3 €000 + 59501 + 7 000 + 7 Got0 + 7 Goot + 7 Gon

\

I
I
o 0 1 2 3
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Step 3: Solving the Recursion

1 1 1 1 1 1 1 1
= —Xo00 + =X100 + =Xo10 + =X110 + =Xo01 + =X101 + =Xo11 + =X
Yooo g 000 g X100 g X010 + g X110 + ZXo01 + FXi01 - gXort + g X
3 15 15 14 1 4 14 1 4
+€h0 + 5 €000 + 5 €oo1 + 7 G000 + 7 G010 + 7 Soo1 + 7 G011

= continuous part and discrete part

I
I

0
S

Sl
G A
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1 1 1 1 1 1 1 1
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Yooo g 000 g X100 g X010 + g X110 + ZXo01 + FXi01 - gXort + g X
3 15 15 14 1 4 14 1 4
+€h0 + 5 €000 + 5 €oo1 + 7 G000 + 7 G010 + 7 Soo1 + 7 G011

= continuous part and discrete part

= continuous part equals the
average load
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Step 3: Solving the Recursion

1 1 1 1 1 1 1 1
= —Xgoo + =X100 + =Xo10 + =X110 + =Xo01 + =X101 + =Xo11 + =X
Yooo g 000 g X100 g X010 + g X110 + ZXo01 + FXi01 - gXort + g X
3 1 2 1 2 1 9 1 1 1 1 1 1
+€hoo T 5 €000 + 5 €oo1 + 7 G000 + 7 G010 + 7 Soo1 + 7 G011

= continuous part and discrete part

= continuous part equals the
average load

= loads are divisible, then perfectly
balanced

I
I
0
S

Sl
G A
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Step 4: Handling the Deviation

1 1 1 1 1 1 1 1
Yooo = ZXooo + = X100 + = Xo10 + = X110 + 5 Xoo1 + S X101 + S Xo11 + = Xi11

8 8 8 8 8 8 8 8
€00 + ~ oo + 2 Eor + 2o + ~ebio + ~elor + e
000 > 000 > 001 4 000 4 010 4 001 4 011
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Step 4: Handling the Deviation

1 1 1 1 1 1 1 1
Yooo = ZXooo + = X100 + = Xo10 + = X110 + 5 Xoo1 + S X101 + S Xo11 + = Xi11

8 8 8 8 8 8 8 8
€00 + ~ oo + 2 Eor + 2o + ~ebio + ~elor + e
000 > 000 > 001 4 000 4 010 4 001 4 011

= Divide rounding errors into two groups:

«,‘E o A Survey on Smoothing Networks Randomized Smoothing Networks

27



Step 4: Handling the Deviation

1 1 1 1 1 1 1 1
Yooo = ZXooo + = X100 + = Xo10 + = X110 + 5 Xoo1 + S X101 + S Xo11 + = Xi11

8 8 8 8 8 8 8 8
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2. Layerslog, n—logylog, n+1,...,log, n
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Step 4: Handling the Deviation

1 1 1 1 1 1 1 1
Yooo = ZXooo + = X100 + = Xo10 + = X110 + 5 Xoo1 + S X101 + S Xo11 + = Xi11
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: : :CCC(Iog2 ny|
I 1 !
I 1T oT
= Divide rounding errors into two groups: | |
1. Layers 1,...,log, n — log, log, n ! |
2. Layerslog, n—logylog, n+1,...,log, n | [
1 ' CCC(n)
| !
| !
| |
1 |
1 |
T log, n
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Step 4: Handling the Deviation

1 1 1 1 1 1 1 1
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Divide rounding errors into two groups:

|
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|
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1. Layers 1,...,log, n — log, log, n ! |

2. Layerslog, n—logylog, n+1,...,log, n | [

« Chernoff = first group contributes < 2 | 1 CCC(n)

| !
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T log, n
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Step 4: Handling the Deviation

1 1 1 1 1 1 1 1
Yooo = ZXooo + = X100 + = Xo10 + = X110 + 5 Xoo1 + S X101 + S Xo11 + = Xi11
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* Divide rounding errors into two groups:
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|
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1. Layers 1,...,log, n — log, log, n 3 3
2. Layerslog, n—logylog, n+1,...,log, n | [
= Chernoff = first group contributes < 2 i 3 CCC(n)
= trivial bound = second group contributes | |
3 log, log, n } 3
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Step 4: Handling the Deviation

1 1 1 1 1 1 1 1
Yooo = ZXooo + = X100 + = Xo10 + = X110 + 5 Xoo1 + S X101 + S Xo11 + = Xi11

8 8 8 8 8 8 8 8
€00 + ~ oo + 2 Eor + 2o + ~ebio + ~elor + e
000 > 000 > 001 4 000 4 010 4 001 4 011
X1 - - - - - - - - - T *‘ }/1
: :CCC(Iog2 ny|

* Divide rounding errors into two groups:

1. Layers 1,...,log, n — log, log, n
2. Layerslog, n—logylog, n+1,...,log, n
= Chernoff = first group contributes < 2 CCC(n)
= trivial bound = second group contributes
3 log, log, n
= discrepancy is at most log, log, n+4 O
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Lower Bound for a single CCC

Upper Bound (Mavronicolas, S., 2010)
| For any input the discrepancy is at most log, log, n+4 w.p. 1 —n~".

1
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Lower Bound for a single CCC

Upper Bound (Mavronicolas, S., 2010)
| For any input the discrepancy is at most log, log, n+ 4 w.p. 1 — n'.

Lower Bound (Mavronicolas, S., 2010)
| For some inputs the discrepancy is at least log, log, n —2w.p. 1 —n~".

1
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Lower Bound (Proof Idea)
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Lower Bound (Proof Idea)
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Further Thoughts on the Lower Bound

Input for lower bound look contrived, so what about random inputs?

‘-,.E,‘ A Survey on Smoothing Networks Randomized Smoothing Networks

30



Further Thoughts on the Lower Bound

Input for lower bound look contrived, so what about random inputs?

Average-Case Model

Assume number of tokens at each input wire is ~ Uni[0, log, n — 1].
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Further Thoughts on the Lower Bound

Input for lower bound look contrived, so what about random inputs?

Average-Case Mod[One can prove that the range [0,log, n — 1] is canomcal.]

~
Assume number of tokens at each input wire is ~ Uni[0, log, n — 1].
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Further Thoughts on the Lower Bound

Input for lower bound look contrived, so what about random inputs?

Average-Case Mod[One can prove that the range [0,log, n — 1] is canomcal.]

~
Assume number of tokens at each input wire is ~ Uni[0, log, n — 1].

~—— Friedrich, Vilenchik, S.11
For this input, discrepancy is at least (1/2—0(1)) log, log, nw.p. 1—0(1).

\. J
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Further Thoughts on the Lower Bound

Input for lower bound look contrived, so what about random inputs?

Average-Case Mod[One can prove that the range [0,log, n — 1] is canomcal.]

~
Assume number of tokens at each input wire is ~ Uni[0, log, n — 1].

~—— Friedrich, Vilenchik, S.11
For this input, discrepancy is at least (1/2—0(1)) log, log, nw.p. 1—0(1).

\. J

“Magic Property”:
= All rounding errors become
independent(!) random variables

—1/2  with probability 1/4
0 with probability 1/2
+1/2  with probability 1/4

i
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Cascading more CCC’s

Mavronicolas, S., 2010
| For any input to the CCC, the discrepancy is log, log, n + O(1).
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Cascading more CCC’s

~——— Mavronicolas, S., 2010

For any input to the CCC, the discrepancy is log, log, n + O(1).

\

What happens if we take the cascade of two or more CCC’s?

o ! -
X ! -
% ! -
X ! -
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Cascading more CCC’s

~——— Mavronicolas, S., 2010

For any input to the CCC, the discrepancy is log, log, n + O(1).

\

What happens if we take the cascade of two or more CCC’s?

o ! -
X ! -
% ! -
X ! -

Mavronicolas, S., 2010
| For any input the discrepancy is at most ¥ 3 w.p. 1 —n~".
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Cascading more CCC’s

For any input to the CCC, the discrepancy is log, log, n + O(1).

What happens if we take the cascade of two or more CCC’s?

~——— Mavronicolas, S., 2010 N

\ J

X1 ¢ L 4 »n
X2 I I V2]
X3 L L 4 V&)
X4 I I Ya
X5 o o *—o— )5
Xo T- I T- I Va

Proof more involved than the analysis of one CCC.
Relies heavily on the symmetry and recursive structure.

Mavronicolas, S., 2010
| For any input the discrepancy is at most ¥ 3 w.p. 1 —n~". ]
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Outline

Stronger Notions of Smoothing Networks

s
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A (More) “Universal” Model

——— (Standard) Smoothing Network
= deterministic initialization: input arbitrary

= random initialization: input arbitrary, but
without knowing initialization

i
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A (More) “Universal” Model

——— (Standard) Smoothing Network
= deterministic initialization: input arbitrary

= random initialization: input arbitrary, but
without knowing initialization

N\
\NX

[v)?: Pr[ CCC(X)is A-smooth| > 1 —n~" ]
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A (More) “Universal” Model

——— (Standard) Smoothing Network
= deterministic initialization: input arbitrary

= random initialization: input arbitrary, but
without knowing initialization

N\
\NX

[v)?: Pr[ CCC(X)is A-smooth| > 1 —n~" ]

Universal Randomized Smoothing Network e
= random initialization: input arbitrary with V\/)Q/\

knowledge of initialization \ué\a%:

i
A Survey on Smoothing Networks Stronger Notions of Smoothing Networks 33



A (More) “Universal” Model

——— (Standard) Smoothing Network
= deterministic initialization: input arbitrary

= random initialization: input arbitrary, but
without knowing initialization

N\
\NX

[v)?: Pr[ CCC(X)is A-smooth| > 1 —n~" ]

knowledge of initialization
N
N\

[Pr [VX: CCC(X)is A\-smooth| >1—n~

Universal Randomized Smoothing Network
= random initialization: input arbitrary Wlth—‘
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One CCC as a Universal Randomized Smoothing Network?
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One CCC as a Universal Randomized Smoothing Network?
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One CCC as a Universal Randomized Smoothing Network?
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One CCC as a Universal Randomized Smoothing Network?

Y10
Y11
Y12
Y13
Y14
Yis

21
I

|
1

X10
X1
X12
X13
X14
X15

Yie

[ S — |

X16

Stronger Notions of Smoothing Networks 34

A Survey on Smoothing Networks



One CCC as a Universal Randomized Smoothing Network?
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Results (and Conjectures)

Lower Bound (Mavronicolas, S.'10)

For any initialisation of the CCC, there exists an input so that the discrep-
ancy is at least (1/4) log, n.
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Results (and Conjectures)

~——— Lower Bound (Mavronicolas, S.10)

For any initialisation of the CCC, there exists an input so that the discrep-
ancy is at least (1/4) log, n.

\

Is the cascade of two (or more) CCC’s a universal smoothing network?
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Results (and Conjectures)

~——— Lower Bound (Mavronicolas, S.10)

For any initialisation of the CCC, there exists an input so that the discrep-
ancy is at least (1/4) log, n.

\

Is the cascade of two (or more) CCC’s a universal smoothing network?

N

A

= Basic lower bound analysis does not work...
= Proving positive result is also challenging because:
= number of possible inputs is (log n)"”
= probabilistic analysis gives error bounds like n—@(Polylod(m) at pest
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Results (and Conjectures)

\

~——— Lower Bound (Mavronicolas, S.10)

For any initialisation of the CCC, there exists an input so that the discrep-
ancy is at least (1/4) log, n.

Is the cascade of two (or more) CCC’s a universal smoothing network?

N

A

= Basic lower bound analysis does not work...
= Proving positive result is also challenging because:
= number of possible inputs is (log n)"”
= probabilistic analysis gives error bounds like n—@(Polylod(m) at pest

Conjecture (Kosowski, S.)

There is a constant e > 0, so that cascading ©(polylog(n)) , ’ ’
m H =

CCC'’s achieves a discrepancy of at most O((log n)' ).
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An Even More “Universal” Model

= random initialization: input arbitrary with
knowledge of initialization

A\
[Pr [VX: CCC(X)is A-smooth| >1 —n~"

Universal Randomized Smoothing Network —‘ Sy
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An Even More “Universal” Model

Universal Randomized Smoothing Network

= random initialization: input arbitrary with
knowledge of initialization

A\
[Pr [VX: CCC(X)is A-smooth| >1 —n~"

“Doubly” Adversarial Model

= input and initialisation controlled by an
adversary

i
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Some First Results on the Adversarial Model

Observation
| One CCC achieves discrepancy of log, n for any input and initialisation.

)
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Some First Results on the Adversarial Model

~——— Observation

One CCC achieves discrepancy of log, n for any input and initialisation.

\.

~——— Conjecture (Kosowski, S., 2016)

Take the cascade of O(polylog(n)) random perfect matchings. Then the
discrepancy is at most O(log n/ loglog n).

\.
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Some First Results on the Adversarial Model

~——— Observation

One CCC achieves discrepancy of log, n for any input and initialisation.

\.

~——— Conjecture (Kosowski, S., 2016)

Take the cascade of O(polylog(n)) random perfect matchings. Then the
discrepancy is at most O(log n/ loglog n).

\.

——— Lower Bound

For any universal smoothing network of depth d, there is an input so that

the discrepancy is at least :ggg
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Some First Results on the Adversarial Model

~——— Observation

One CCC achieves discrepancy of log, n for any input and initialisation.

\.

~——— Conjecture (Kosowski, S., 2016)

Take the cascade of O(polylog(n)) random perfect matchings. Then the
discrepancy is at most O(log n/ loglog n).

\.

~

——— Lower Bound

For any universal smoothing network of depth d, there is an input so that

the discrepancy is at least :ggg

~

)

Lemma
| For any graph with maxdegree A, diam(G) > log n/(log A).
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Some First Results on the Adversarial Model

——— Observation \
One CCC achieves discrepancy of log, n for any input and initialisation.

\. J

~——— Conjecture (Kosowski, S., 2016)

Take the cascade of O(polylog(n)) random perfect matchings. Then the
discrepancy is at most O(log n/ loglog n).

\. J

——— Lower Bound 2
For any universal smoothing network of depth d, there is an input so that

the discrepancy is at least :ggg

)

Lemma
| For any graph with maxdegree A, diam(G) > log n/(log A). ]

N

[One can reach at most AX vertices from any node in k hops. ]
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Proof Sketch of Lower Bound
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Proof Sketch of Lower Bound
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Proof Sketch of Lower Bound
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Proof Sketch of Lower Bound
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Proof Sketch of Lower Bound
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Proof Sketch of Lower Bound
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Proof Sketch of Lower Bound
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Proof Sketch of Lower Bound
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Outline

Conclusion
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Summary

log n

Model / Discrepancy 1 2 (log n)'—¢ ToglogT log n
Counting ©(log n) v v v v
Random Smoothing Q(n) O(log n) v v v
Random Universal ?? ?7? logn
Adversarial o0 Q(n) Q2097 %) | O(polylog(n)) | logn
2 A Survey on Smoothing Networks Conclusion
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Summary

log n

Model / Discrepancy 1 2 (log n)'—¢ ToglogT log n
Counting ©(log n) v v v v
Random Smoothing Q(n) O(log n) v v v

Random Universal ?? ?? logn

Adversarial o0 Q(n) Q2097 %) | O(polylog(n)) | logn

Random Smoothing on Arbitrary Graphs (Sun, S./12)

For arbitrary graphs, one can achieve a constant discrepancy in
O(log(Kn)/(1 — A2)) rounds, where K is the initial discrepancy and 1 — Az

is the spectral gap.
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Summary

log n

Model / Discrepancy 1 2 (log n)'—¢ ToglogT log n
Counting ©(log n) v v v v
Random Smoothing Q(n) O(log n) v v v

Random Universal ?? ?? logn

Adversarial o0 Q(n) Q2097 %) | O(polylog(n)) | logn

Random Smoothing on Arbitrary Graphs (Sun, S./12)

For arbitrary graphs, one can achieve a constant discrepancy in
O(log(Kn)/(1 — A2)) rounds, where K is the initial discrepancy and 1 — Az

is the spectral gap.

= first results in the universal/adversarial model are sketchy,
but hint at an interesting landscape

= random smoothing networks appear to be relatively well-understood

:'a"n
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