A Principled Way of Designing Efficient Protocols J

Yoram Moses

Technion

Partly joint with Armando Castafeda and Yannai Gonczarowski

SIROCCO 2016, (=) A Useful Design Principle July 19th, 2016 1/43

Motivation

THEME

SIROCCO is devoted to the study of the interplay between
communication and knowledge in multi-processor systems from both
the qualitative and quantitative viewpoints. Special emphasis is given to

innovative approaches and fundamental understanding...

SIROCCO 2016, () A Useful Design Principle July 19th, 2016 2 /43

-
Many Models of Distributed Computing

@ Communication: Message passing, shared memory, visual signalling
o Topology: Fixed, Dynamic

e Timing: Clocks, timing guarantees on actions and events (synchrony
asynchrony, partial synchrony)

@ Computing power: From mainframes, servers, mobile devices,
low-powered sensors

@ Failure modes, Uniqueness of ID’s, etc...
No unifying “Turing-machine” model for distributed systems

Lack of general results that apply to “all systems"

SIROCCO 2016, () A Useful Design Principle July 19th, 2016 3/43

Computing the Max

Example: Computing the Maximum (CTM)

ot b & &

@ Each node i has an initial value v;

@ Agent 1 must print the maximal value

SIROCCO 2016, (=) A Useful Design Principle July 19th, 2016 4 /43

Computing the Max

Example: Computing the Maximum (CTM)

-
| v2=100

*

o After receiving “v, = 100" Agent 1 has the maximum.

Can she act?

SIROCCO 2016, (=) A Useful Design Principle July 19th, 2016 4 /43

Example: Computing the Maximum (CTM)

SIROCCO 2016, (=) A Useful Design Principle July 19th, 2016 4 /43

Computing the Max

Collecting Values

@ Collecting all values is not necessary

SIROCCO 2016, (=) A Useful Design Principle July 19th, 2016 5/43

Computing the Max

Collecting Values

@ Collecting all values is not necessary

SIROCCO 2016, (=) A Useful Design Principle July 19th, 2016 5/43

Computing the Max

Collecting Values

® 100

@ Collecting all values is not necessary

SIROCCO 2016, (=) A Useful Design Principle July 19th, 2016 5/43

Collecting Values

b N) Q
- 75 100 80 90
@ 100,80,90, \—/ U X 2

Collecting all values is not sufficient

SIROCCO 2016, (=) A Useful Design Principle July 19th, 2016 5/43

Collecting Values

g 2.
()
p |

()
8
e

#

Collecting all values is not sufficient:
Alice might not know that she has all values

SIROCCO 2016, (=) A Useful Design Principle July 19th, 2016

5/ 43

Computing the Max

What is CTM about if not collecting values?

Knowledge

Knowing that Max = c is necessary and sufficient for printing c.

SIROCCO 2016, (=) A Useful Design Principle July 19th, 2016

6/ 43

Knowledge of Preconditions

Knowing that Max = ¢ can depend on:

@ Messages received
@ The agents’ protocol
@ The domain of possible initial values

The network topology

Timing guarantees re: communication, synchrony, activation

Possibility of failures, ...

Needing to know the maximum is an instance of a general principle

SIROCCO 2016,) A Useful Design Principle July 19th, 2016 7 /43

The Knowledge of Preconditions Principle (KoP)

If © must be true | when / performs « J

Then Kip must be true | when i performs «)

SIROCCO 2016, (=) A Useful Design Principle July 19th, 2016 8 /43

The Knowledge of Preconditions Principle (KoP)

If © must be true | when / performs « J

Then Kip must be true | when i performs «)

If good credit is a prerequisite for ATM payment

Then K,im(credit) is a prerequisite for ATM payment

SIROCCO 2016,) A Useful Design Principle July 19th, 2016 8 /43

The Knowledge of Preconditions Principle (KoP)

If must be true | when i performs «)

Then Kip must be true | when / performs « J

If Empty Critical Section is a prerequisite for i entering the CS

Then Ki(empty CS) is a prerequisite for / entering the CS

This is useful for analyzing Mutual Exclusion [M.&Patkin 2015]

SIROCCO 2016, (=) A Useful Design Principle July 19th, 2016 8 /43

The Knowledge of Preconditions Principle (KoP)

If © must be true | when / performs « J

Then Kip must be true | when i performs «)

If Alice has moved is a prerequisite for Bob's move

Then Kpop(Alice has moved) is a prerequisite for Bob's move

SIROCCO 2016,) A Useful Design Principle July 19th, 2016 8 /43

Knowledge of Preconditions

The Knowledge of Preconditions Principle (KoP)

If © must be true | when i performs «)

Then Kip must be true | when i performs « J

= All standard specifications are epistemic:

Knowledge is a prerequisite for action

This is a fundamental theorem of multi-agent systems

SIROCCO 2016, &) A Useful Design Principle

July 19th, 2016

9/43

A Theory of Knowledge in Distributed Systems

A three decades old theory of knowledge is based on

o Kripke 1950's, Hintikka [1962], Aumann [1976]

Halpern and M. [1984]

Parikh and Ramanujam [1985]

Chandy and Misra [1986]

Fagin et al. [1995], Reasoning about Knowledge s

SIROCCO 2016, () A Useful Design Principle July 19th, 2016 10 / 43

Modeling Knowledge in Distributed Systems

Basic notion: Indistinguishability

v

1 has the same state at both points

SIROCCO 2016,

A Useful Design Principle

July 19th, 2016 11 / 43

Modeling Knowledge in Distributed Systems

Basic notion: Indistinguishability

true at an indistinguishable point < possible
T O >
Ay
\\
\ 1
\
\
\
\
1
1
/ /
() >
r O >
Max # 100

SIROCCO 2016,

A Useful Design Principle

July 19th, 2016

11/ 43

Modeling Knowledge in Distributed Systems

Basic notion: Indistinguishability

pox, (100)
r o/ \QO ,
\\\1
|
/ /
r 03 >
Max # 100

SIROCCO 2016,

A Useful Design Principle

July 19th, 2016

11/ 43

Modeling Knowledge in Distributed Systems

Defining Knowledge in Pictures

5

T -~ >
\./\ EEN
Iy 21
P N é
! PR
/r./ PLL TN Y \\‘Z g >
J \ U
'Y A
" A | >
U [=
n f\// »
U o
SIROCCO 2016, () A Useful Design Principle

July 19th, 2016 12 / 43

Modeling Knowledge in Distributed Systems

Defining Knowledge in Pictures

5

T - >

\/\ EEN

Iy 21

. b Ty o
7°/ Pl P YN et >
L N2 >
1/ C) _
x >

() i
n % »
\.{p o
SIROCCO 2016, () A Useful Design Principle

July 19th, 2016 12 / 43

Modeling Knowledge in Distributed Systems

Defining Knowledge in Pictures

K;p

T M) _ >
\/\ EEN
Iy 21
. by F
T/ P LNt ot >
.\\ \\\ _(0 >
" I | >
x >
\JSO]
n % »
\.{p o
SIROCCO 2016, () A Useful Design Principle

July 19th, 2016 12 / 43

Modeling Knowledge in Distributed Systems

Defining Knowledge in Pictures

T M) _ >
\/\ Ty
Iy 21
Y ’
/Y o*
r! == O >
J \ U
Y 3
" I | >
U [l =
n f\// »
U o
P
SIROCCO 2016, () A Useful Design Principle

July 19th, 2016 12 / 43

Modeling Knowledge in Distributed Systems

Defining Knowledge in Pictures

-K;

AS)

T M) _ >
\/\ Ty
Iy 21
O I N é
! e
/r./ PLE Y \\‘Z Fg 3l >
J \ U
Y 3
" I | >
U [l =
n f\// »
U o
P
SIROCCO 2016, () A Useful Design Principle

July 19th, 2016 12 / 43

Modeling Knowledge in Distributed Systems

Defining Knowledge more formally [Fagin et al. 1995]

@ Arunis asequence r:N—>G of global states.

@ A system is a set R of runs.

Assumption

Each global state r(t) determines a local state r;(t) for every agent i. J

Definition
(R,r,t) £ Kip iff (R,r',t")E ¢ forall points (r',t") of R
such that ri(t) =r/(t').

SIROCCO 2016, (=) A Useful Design Principle July 19th, 2016 13 / 43

Runs and points

A point (r,t) refers to time t in run r.

Facts are "true" or "false" at a point.

R x N = Pts(R) is the set of points in system R.

(r0) (r1) (r2) (r3) (r4) (rt)

00000 @ >

A Propositional Logic of Knowledge

Starting from a set ® of primitive propositions, define LK = £K(®) by

p = ped | p | prp | Kip | | Kap

Given an interpretation 7 : ® x Pts(R) — {True, False}

(Ryr,t)Ep, for ped, iff w(p,r,t)="True.

(R,rt) E - iff (R,rt) o
(Ryryit) Epnt iff both (R,r,t) E @ and (R,r,t) E.

SIROCCO 2016, () A Useful Design Principle July 19th, 2016 15 / 43

Knowledge = Truth in All Possible Worlds

(R,r,t) £ Kip iff (R,r',t')E ¢ forall points (r',t") of R
such that ri(t)=r/(t").

SIROCCO 2016, () A Useful Design Principle July 19th, 2016 16 / 43

Knowledge = Truth in All Possible Worlds

(R,r,t) £ Kip iff (R,r',t')E ¢ forall points (r',t") of R
such that ri(t)=r/(t").
Comments:
The definition ignores the complexity of computing knowledge
Local information = current local state.
Kip holds if ¢ is guaranteed to hold in R given i's local state.

The knowledge operator K; is an §5 modal operator.

SIROCCO 2016,) A Useful Design Principle July 19th, 2016 16 / 43

Necessary Conditions for Actions (aka “preconditions”)

Max = c is a necessary condition for print,(c) in CTM.

Definition
1 is a necessary condition for does;(c) in R if

(R,r,t) & does;(a) =1 forall (r,t) € Pts(R).

Specifications impose necessary conditions:

@ “Good credit” is necessary for ATM dispensing cash

e “CS is empty” is necessary for entering the CS in Mutual Exclusion

Knowledge and Coordination

Knowledge of Preconditions

Definition
o is a conscious action for i in R if

(R,r,t) =doesi(a) & r!(t")=ri(t) implies (R,r',t")E does;(a)

Theorem (KoP, [M. 2015])
Suppose that « is a conscious action for i in the system R.
If ¢ is a necessary condition for does;(a) in R, then

Kip is a necessary condition for does;(a) in R.

SIROCCO 2016, (=) A Useful Design Principle July 19th, 2016 18 / 43

Proof of KoP

does; («)
T O >
/
r O g
" M »
U o
117
r O >

o is a conscious action for i

@ is a necessary condition for does; ()

SIROCCO 2016, () A Useful Design Principle July 19th, 2016 19 / 43

Proof of KoP

does; («)
r O — >
\/\ Sa
I\]
Y //
/ . i/ N -
e SN ,\’ |-
T 7 - O >
Z A :
r O i -
1
1"/ /
r O >

o is a conscious action for i

@ is a necessary condition for does; ()

SIROCCO 2016, () A Useful Design Principle July 19th, 2016 19 / 43

Proof of KoP

does; («)
T Q — >
|\\ /L.\l
Y //
/ sm=~o Y \ m’/ »
7“ '\ % U »
\ \ does; ()
" e \ >
r QO | >
does; () !
" Y. >
r @), >
does; ()

o is a conscious action for i

@ is a necessary condition for does; ()

SIROCCO 2016, () A Useful Design Principle July 19th, 2016 19 / 43

Knowledge and Coordination

Proof of KoP

¢, does; ()
I >
I\]
Y . //
7“/ === VONE T -
\ N "
\ v, does;(a)
!/ C) _
: >
p, does; ())
P! (Y >
O >
v, does; ()

o is a conscious action for i

@ is a necessary condition for does; ()

SIROCCO 2016,

()

A Useful Design Principle

July 19th, 2016

19 / 43

Proof of KoP

Kip
does; («)
oY -
I\]
Y //
7“/ o= YN~ >
\ \ \ g
\ Lo does; ()
,r// C) _
: >
p, does; ())
T,// 7~y -
\ o
v, does; ()

o is a conscious action for i

@ is a necessary condition for does; ()

SIROCCO 2016, () A Useful Design Principle July 19th, 2016 19 / 43

An Application: Distributed Consensus

Model:
1 ° °
2 : [
3 o o
® P
oo
oo
.
o :
° S
n fo) fo)
T T T T >
0 1 2 3 4 5

a complete communication graph with n nodes

SIROCCO 2016, () A Useful Design Principle July 19th, 2016

20 / 43

An Application: Distributed Consensus

Model:
! ° °
2 :
3 o o
o P
oo
o e
.
° :
° P ® - I
n o o O Qo 1o}
T T T T >
0 1 2 3 4 5

each process i starts with an initial “vote" v; € {0,1}

SIROCCO 2016, () A Useful Design Principle July 19th, 2016 20 / 43

An Application: Distributed Consensus

Model:
1 ° °
2 : [
3 o o
® P
oo
oo
.
o :
° S
n fo) fo)
T T T T >
0 1 2 3 4 5

a discrete global clock, messages take 1 round

SIROCCO 2016, () A Useful Design Principle July 19th, 2016

20 / 43

Deriving Efficient Protocols

An Application: Distributed Consensus

Model:
! ° ° Qe Qe °
2 : [,,,,,
3 /o o o O o
i <:¢ 0 0 ° °
o PR
SO
oo
.
o SN S S
o - o o I
n ° o O O °
T T T T >
0 1 2 3 4 5

full-information protocol (fip): Processes broadcast their complete history

SIROCCO 2016, () A Useful Design Principle July 19th, 2016 20 / 43

Deriving Efficient Protocols

An Application: Distributed Consensus

Model:

full-information protocol (fip): Processes broadcast their complete history

SIROCCO 2016, () A Useful Design Principle July 19th, 2016 20 / 43

An Application: Distributed Consensus

Model:

full-information protocol (fip): Processes broadcast their complete history

SIROCCO 2016, (

A Useful Design Principle July 19th, 2016 20 / 43

An Application: Distributed Consensus

Model:

crash failures

SIROCCO 2016, (

A Useful Design Principle July 19th, 2016 20 / 43

An Application: Distributed Consensus

Model:

crash failures

SIROCCO 2016, (

A Useful Design Principle July 19th, 2016 20 / 43

An Application: Distributed Consensus

Model:

crash failures: at most t < n processes fail per run

SIROCCO 2016, (

A Useful Design Principle July 19th, 2016

20 / 43

An Application: Distributed Consensus

Model:

a process is correct in r if it doesn't crash

SIROCCO 2016, (

A Useful Design Principle July 19th, 2016

20 / 43

Deriving Efficient Protocols

Consensus

Protocol Specification:

In every run with no more than t processes crashes:

Decision: Every correct process must decide on some value
Validity: decide;i(v) is allowed only if someone voted v (“3v")

Agreement: All correct processes decide on the same value

correct = does not crash

SIROCCO 2016, () A Useful Design Principle July 19th, 2016 21 /43

Deriving Efficient Protocols

t +1 round Lower Bound

Theorem (Dolev-Strong '82, Fischer-Lynch '82)

Every consensus protocol must have a (worst-case) run in which

the last correct process requires at least t + 1 rounds to decide.

SIROCCO 2016, (=) A Useful Design Principle July 19th, 2016 22 /43

A Knowledge-based Analysis: Deciding on 0

Validity: A necessary condition for decide;(v) is Jv, for v=0,1

e By Validity, 30 is a necessary condition for decide;(0).

@ By KoP, K;30 is a necessary condition for decide;(0).

SIROCCO 2016,) A Useful Design Principle July 19th, 2016 23 /43

Knowing 30

1 O o @

2 e o

3 o : [} : o o]

LI T T TS

i o K30 o K;30

n o O Q.. o ol
T T T T T —>
0 1 2 3 4 5 6

K;30 holds if v; = 0 or j received a message from a process that knows 30.

SIROCCO 2016, () A Useful Design Principle July 19th, 2016 24 / 43

Knowing 30

. Q- QO - O_'KZEIO
IR o o o KJEIO o
o

@]

How can one proc know 30 when another does not?

SIROCCO 2016, () A Useful Design Principle July 19th, 2016

24 /43

Knowing 30

How can one proc know 30 when another does not?

SIROCCO 2016, () A Useful Design Principle July 19th, 2016 24 / 43

Knowing 30

How can one proc know 30 when another does not?

SIROCCO 2016, () A Useful Design Principle July 19th, 2016 24 / 43

Knowing 30

How can one proc know 30 when another does not?

SIROCCO 2016, () A Useful Design Principle July 19th, 2016 24 / 43

Knowing 30

How can one proc know 30 when another does not?

SIROCCO 2016, () A Useful Design Principle July 19th, 2016 24 / 43

Knowing 30

1 o ©
2 ;
3 R —
i o ©°
j S
e
o o
o o o
n o O o o ol
T T T T >
0 1 2 3 o . . m

SIROCCO 2016, () A Useful Design Principle July 19th, 2016 24 / 43

Knowing 30

1
2
3
i
J
° e o ° ®
n e} O, o o o
j >
T T T T T >
0 1 2 3 e em

SIROCCO 2016, () A Useful Design Principle July 19th, 2016 24 / 43

Knowing 30

Claim: If K;30 & -K;30 at time m, then > m crashes have occurred

SIROCCO 2016, () A Useful Design Principle July 19th, 2016 24 / 43

Knowing 30

Corollary: At time t + 1, either everyone knows 30 or nobody does

SIROCCO 2016, () A Useful Design Principle July 19th, 2016 24 / 43

Deriving Efficient Protocols

A Simple Consensus Protocol

Protocol P, (for undecided process /):

if time=t+1 & K;30 then decide;(0)

elseif time=t+1 & -K;30 then decide;(1)

Communication is according to the fip.

Optimal: All decisions at time t + 1

SIROCCO 2016, () A Useful Design Principle July 19th, 2016

25 / 43

A Better Protocol

Protocol Qp (for undecided process /):
if K;30 then decide;(0)

elseif time=t+1 & -K;30 then decide;(1)

Optimal: All decisions by time t + 1

SIROCCO 2016,) A Useful Design Principle July 19th, 2016

26 / 43

®Qo Dominates P,

An adversary is a pair B = (V,F)
o V =(v,...,v,) determines the initial values

@ F is the failure pattern — who crashes, when, and how

Definition
Protocol P’ dominates protocol P if, for all adv. 3, process i and time k,
if i decides at time k in P[] then it decides by time k in P'[3].

Claim
Qo strictly dominates Py. J

SIROCCO 2016, (=) A Useful Design Principle July 19th, 2016 27 / 43

Deriving Efficient Protocols

t+1

Time of last
decision

27 Q

] 1

Adversaries

SIROCCO 2016, (=) A Useful Design Principle July 19th, 2016 28 / 43

Deriving Efficient Protocols

t+1

Time of last
decision

27 Q

1 —

Adversaries

SIROCCO 2016, (=) A Useful Design Principle July 19th, 2016 28 / 43

®Qo Dominates P,

An adversary is a pair B = (V,F)
o V =(v,...,v,) determines the initial values

@ F is the failure pattern — who crashes, when, and how

Definition
Protocol P’ dominates protocol P if, for all adv. 3, process i and time k,
if i decides at time k in P[] then it decides by time k in P'[3].

Claim
Qo strictly dominates Py. J

Can Qg be dominated?

SIROCCO 2016, (=) A Useful Design Principle July 19th, 2016 29 / 43

A Knowledge-based Analysis: Deciding on 1

Suppose the rule for deciding 0 is K;30 <> decide;(0).
When can decide;(1) be performed?

Recall:
Agreement: All correct processes decide on the same value

@ By Agreement, “no currently active process decides 0" is a necessary
condition for decide;(1); so

@ 1 = “no active process knows 30" is a nec. cond. for decide;(1);

@ By the KoP, K,-(nobody_knowsHO) is a necessary condition for
decide;(1).

SIROCCO 2016, () A Useful Design Principle July 19th, 2016 30/ 43

Deriving Efficient Protocols

An Unbeatable Consensus Protocol [Castafieda, Gonczarowski & M. '14]

Protocol OPTy (for undecided process /):

if K;30 then decide;(0)

elseif K;j(nobody_knows30) then decide(1)

SIROCCO 2016, () A Useful Design Principle July 19th, 2016

31/ 43

Deriving Efficient Protocols

An Unbeatable Consensus Protocol [Castafieda, Gonczarowski & M. '14]

Protocol OPTy (for undecided process /):

if K;30 then decide;(0)

elseif K;j(nobody_knows30) then decide(1)

By the KoP:

@ decide;(0) is performed as soon as possible

@ decidej(1) is performed asap, given the rule for decide(0)

SIROCCO 2016, () A Useful Design Principle July 19th, 2016

31/ 43

Deriving Efficient Protocols

Im plemented OP TO [Castafieda, Gonczarowski & M. '14]

Protocol OPTy (for undecided process /):

if K;30 then decide;(0)

elseif K;j(nobody_knows30) then decide;(1)

My name is Sherlock Holmes.
It is my business to know
what other people don’t know.

The Adventure of the Blue Carbuncle, 1892

SIROCCO 2016, () A Useful Design Principle July 19th, 2016 32 /43

Implementing OPT,

Protocol OPTy (for undecided process 7):

if K;30 then decide;(0)

elseif K,-(nobody_knowsEIO) then decide;i(1)

To test for K,-(nobody_knowsﬂO), recall the analysis of K;30& -K;30

SIROCCO 2016, () A Useful Design Principle July 19th, 2016 33 /43

Deriving Efficient Protocols

SIROCCO 2016, () A Useful Design Principle July 19th, 2016 34 /43

Deriving Efficient Protocols

K,-(nobody_knowsEIO) does not hold

SIROCCO 2016, () A Useful Design Principle July 19th, 2016 34 /43

Deriving Efficient Protocols

1 o R e o
2 o L :
5 Qe .
J e -0)
) -2
N 2 : 8
A B & -
¢ e PR m m .
e A ° R
T T T T T >
0 1 2 3 < e e m

The world according to i

SIROCCO 2016, () A Useful Design Principle July 19th, 2016 34 /43

Deriving Efficient Protocols

1 o e o
1 Qe R
j
e -7
e g
B T3 -
> & m .
e e
T T T T T >
0 1 2 3 < e eom

Process i's view contains a hidden path

SIROCCO 2016, () A Useful Design Principle July 19th, 2016 34 /43

Deriving Efficient Protocols

e . o e
9 NP ‘ m Y
3 e R . m .
; T GRS S S
i - . @ P . , .
J Qe
e ° -2
e 2 8
P S g
T T T T | —
0 1 2 3 m

Each node (h, k) is seen, crashed or hidden w.r.t. (i, m)

SIROCCO 2016, () A Useful Design Principle July 19th, 2016 34 /43

Deriving Efficient Protocols

1 B A o - L

2 e . CE @

; I S I —

e ey
o e BB
o ® g . .
N B @ B -

- G SR m me m
o e e

np e R

T T T >
0 1 2 e« e ¢ m

Time k is revealed at (i, m) if all nodes (h, k) are not hidden

SIROCCO 2016, () A Useful Design Principle July 19th, 2016 34 /43

Deriving Efficient Protocols

! e R e

2 | e

i e) e

j D — .
. w
e ° - B
2a T

e mm o E—
e R

g ol oo

T T T >
0 1 2 e e o0 m

If time k is revealed and -K;30 then -K;30

SIROCCO 2016, () A Useful Design Principle July 19th, 2016 34 /43

Deriving Efficient Protocols

@-B-B-H-H

K, (nobody _knows30)

K07

w
e e o
@

o

@B B BB B @ B BB

- - - - -

n

e e
[]

o

N

g |
\ 4

If time k is revealed and —K;30 then K,-(nobody_knowsEIO)

SIROCCO 2016, () A Useful Design Principle July 19th, 2016 34 /43

Deriving Efficient Protocols

@-B-B-H-H

K, (nobody _knows30)

K07

w
e e o
@

o

@B B BB B @ B BB

- - - - -

n

e e
[]

o

N

g |
\ 4

K,-(nobody_knowsHO) iff some time k is revealed and -K;30

SIROCCO 2016, () A Useful Design Principle July 19th, 2016 34 /43

Deriving Efficient Protocols

1 e R R
2 ee B
E .- 2 BSOS SO
i o . e B j.lgn<pcpcdy,knowsqt))
/ :) B T s 01
) R
L .
e e o
T T T —>
0 1 2 e e e o m

K,-(nobody_knowsHO) iff some time k is revealed and -K;30

SIROCCO 2016, () A Useful Design Principle July 19th, 2016 34 /43

A Sta ndard PI’OtOCOI fOI' OP TO [Castafieda, Gonczarowski & M. '14]

Standard OPT (for undecided process /):

if seen 0 then decide;(0)

elseif some time k is revealed to /i then decidei(1)

Theorem (CGM)
o OPTy dominates Qg

e No consensus protocol dominates OPTy (it is unbeatable)

e OPTy implementable using O(logn) bit messages on average

SIROCCO 2016,) A Useful Design Principle July 19th, 2016

35 /43

Deriving Efficient Protocols

Another Example

SIROCCO 2016, (=) A Useful Design Principle July 19th, 2016 36 / 43

Deriving Efficient Protocols

Another Example: Majority Consensus

In addition to Decision, Validity and Agreement, we require:

Majority Rule: A correct process will
decide 0 if it discovers > n/2 of the votes are 0

decide 1 if it discovers > n/2 of the votes are 1

SIROCCO 2016, () A Useful Design Principle July 19th, 2016

37 /43

Deriving Efficient Protocols

All-case Optimal Majority Consensus

Standard OPT,, (for undecided process /):

if seen >n/2 votes of 0 then decide;(0)
elseif seen >n/2 votes of 1 then decide;i(1)

elseif some time k is revealed to i &
seen more votes for v than 1 —v then decide;(v)

SIROCCO 2016, () A Useful Design Principle July 19th, 2016 38 /43

Deriving Efficient Protocols

Majority Consensus

1
2
3
7
J
B W ® B @
@ ° @ °
e e e e s
H H -
| T T | >
0 1 2 3 e« o+ m

A hidden path can report all of the unknown votes

SIROCCO 2016, () A Useful Design Principle July 19th, 2016 39 /43

All-case Optimality

Theorem (CGM)
The protocol OPT p,:

@ solves Majority Consensus

@ dominates all protocols for Majority Consensus

@ decides in < f +1 rounds (aka “early stopping”)
e is implementable using O(logn) bit messages on average
@ Treats “0” and “1" fairly
v
SIROCCO 2016, (=) A Useful Design Principle July 19th, 2016 40 / 43

Deriving Efficient Protocols

t+1 —

Time of last
decision

mc

2 OPT,
1

Adversaries

SIROCCO 2016, (=) A Useful Design Principle July 19th, 2016 41 /43

KoP Revisited

The KoP is a universal theorem for distributed systems
KoP applies more generally:
e Suppose that a legal system satisfies that Judge punishes X only if

X committed the crime. By KoP, when deciding to punish the judge
must know that X committed the crime.

SIROCCO 2016,) A Useful Design Principle July 19th, 2016 42 /43

KoP Revisited

The KoP is a universal theorem for distributed systems

KoP applies more generally:

o A jellyfish does not sting its own body. By KoP the jellyfish cell must
know not my body when it launches a sting.

SIROCCO 2016,) A Useful Design Principle July 19th, 2016 42 /43

KoP Revisited

The KoP is a universal theorem for distributed systems

KoP applies more generally:

o Consider a (Turing) machine that will perform accept on a
word x € {0,1}* only if x € L for a given language L. Then the TM
head must know, based on the current state and the letter seen on the

tape, that x € L.

SIROCCO 2016,) A Useful Design Principle July 19th, 2016 42 / 43

Deriving Efficient Protocols

Conclusions

KoP formally relates knowledge and action

Protocol specifications induce epistemic conditions

Knowledge is an essential aspect of distributed protocols
Knowledge-based analysis facilitates design of efficient protocols

Diverse applications including VLSI, Biology, real-time coordination
and more

Thank Youl

SIROCCO 2016, () A Useful Design Principle July 19th, 2016 43 / 43

