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Motivation

THEME

SIROCCO is devoted to the study of the interplay between 

communication and knowledge in multi-processor systems from both 

the qualitative and quantitative viewpoints. Special emphasis is given to 

innovative approaches and fundamental understanding… 
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Many Models of Distributed Computing

Communication: Message passing, shared memory, visual signalling

Topology: Fixed, Dynamic

Timing: Clocks, timing guarantees on actions and events (synchrony
asynchrony, partial synchrony)

Computing power: From mainframes, servers, mobile devices,
low-powered sensors

Failure modes, Uniqueness of ID’s, etc...

No unifying “Turing-machine” model for distributed systems

Lack of general results that apply to “all systems"
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Computing the Max

Example: Computing the Maximum (CtM)

75 100 80 90

1 2 3 4

Each node i has an initial value vi

Agent 1 must print the maximal value

After receiving “v2 = 100” Agent 1 has the maximum.
Can she act?
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Computing the Max

Collecting Values

75 100 80 90

1 2 3 4

90

Collecting all values is not necessary

Collecting all values is not sufficient:
Alice might not know that she has all values
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Computing the Max

What is CtM about if not collecting values?

Knowledge

Knowing that Max = c is necessary and sufficient for printing c.

Needing to know the maximum is an instance of a general principle:
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Knowledge of Preconditions

Knowing that Max = c can depend on:

Messages received

The agents’ protocol

The domain of possible initial values

The network topology

Timing guarantees re: communication, synchrony, activation

Possibility of failures, . . .

Needing to know the maximum is an instance of a general principle
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Knowledge of Preconditions

The Knowledge of Preconditions Principle (KoP)

If ϕ must be true when i performs α

Then Kiϕ must be true when i performs α

Then is a prerequisite for
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Knowledge of Preconditions

The Knowledge of Preconditions Principle (KoP)

If ϕ must be true when i performs α

Then Kiϕ must be true when i performs α

If good credit is a prerequisite for ATM payment

Then Katm(credit) is a prerequisite for ATM payment
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Knowledge of Preconditions

The Knowledge of Preconditions Principle (KoP)

If ϕ must be true when i performs α

Then Kiϕ must be true when i performs α

If Empty Critical Section is a prerequisite for i entering the CS

Then Ki(empty CS) is a prerequisite for i entering the CS

This is useful for analyzing Mutual Exclusion [M.&Patkin 2015]
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Knowledge of Preconditions

The Knowledge of Preconditions Principle (KoP)

If ϕ must be true when i performs α

Then Kiϕ must be true when i performs α

If Alice has moved is a prerequisite for Bob’s move

Then KBob(Alice has moved) is a prerequisite for Bob’s move
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Knowledge of Preconditions

The Knowledge of Preconditions Principle (KoP)

If ϕ must be true when i performs α

Then Kiϕ must be true when i performs α

Ô⇒ All standard specifications are epistemic:

Knowledge is a prerequisite for action

This is a fundamental theorem of multi-agent systems
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Modeling Knowledge in Distributed Systems

A Theory of Knowledge in Distributed Systems

A three decades old theory of knowledge is based on

Kripke 1950’s, Hintikka [1962], Aumann [1976]

Halpern and M. [1984]

Parikh and Ramanujam [1985]

Chandy and Misra [1986]

Fagin et al. [1995], Reasoning about Knowledge
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Modeling Knowledge in Distributed Systems

Basic notion: Indistinguishability

r

r0

i

i has the same state at both points
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r

r0

1

Max �= 100

true at an indistinguishable point � possible
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Modeling Knowledge in Distributed Systems

Basic notion: Indistinguishability

print1(100)

r

r0

1

X

Max �= 100
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Modeling Knowledge in Distributed Systems

Defining Knowledge in Pictures

r

r0
i i

i

r00

r000

�
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Modeling Knowledge in Distributed Systems

Defining Knowledge in Pictures

¬�
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Modeling Knowledge in Distributed Systems

Defining Knowledge more formally [Fagin et al. 1995]

A run is a sequence r ∶ N→ G of global states.

A system is a set R of runs.

Assumption
Each global state r(t) determines a local state ri(t) for every agent i .

Definition
(R, r , t) ⊧ Kiϕ iff (R, r ′, t ′) ⊧ ϕ for all points (r ′, t ′) of R

such that ri(t) = r ′i (t ′).
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Runs and points

(r,0)       (r,1)        (r,2)       (r,3)        (r,4)                                                     (r,t) 
      

A point (r , t) refers to time t in run r .

Facts are "true" or "false" at a point.

R ×N = Pts(R) is the set of points in system R.



Modeling Knowledge in Distributed Systems

A Propositional Logic of Knowledge

Starting from a set Φ of primitive propositions, define LK
n = L

K
n (Φ) by

ϕ ∶= p ∈Φ ∣ ¬ϕ ∣ ϕ ∧ϕ ∣ K1ϕ ∣ ⋯ ∣ Knϕ

Given an interpretation π ∶ Φ × Pts(R) → {True,False}

(R, r , t) ⊧ p, for p ∈ Φ, iff π(p, r , t) = True.

(R, r , t) ⊧ ¬ϕ iff (R, r , t) /⊧ ϕ

(R, r , t) ⊧ ϕ ∧ ψ iff both (R, r , t) ⊧ ϕ and (R, r , t) ⊧ ψ.
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Modeling Knowledge in Distributed Systems

Knowledge = Truth in All Possible Worlds

(R, r , t) ⊧ Kiϕ iff (R, r ′, t ′) ⊧ ϕ for all points (r ′, t ′) of R
such that ri(t)=r ′i (t ′).

Comments:

The definition ignores the complexity of computing knowledge

Local information = current local state.

Kiϕ holds if ϕ is guaranteed to hold in R given i ’s local state.

The knowledge operator Ki is an S5 modal operator.
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Necessary Conditions for Actions (aka “preconditions”)

Max = c is a necessary condition for print1(c) in CtM.

Definition
ψ is a necessary condition for doesi(α) in R if

(R, r , t) ⊧ doesi(α) ⇒ ψ for all (r , t) ∈ Pts(R).

Specifications impose necessary conditions:

“Good credit” is necessary for ATM dispensing cash

“CS is empty” is necessary for entering the CS in Mutual Exclusion



Knowledge and Coordination

Knowledge of Preconditions

Definition
α is a conscious action for i in R if
(R, r , t) ⊧ doesi(α) & r ′i (t ′) = ri(t) implies (R, r ′, t ′) ⊧ doesi(α)

Theorem (KoP, [M. 2015])
Suppose that α is a conscious action for i in the system R.
If ϕ is a necessary condition for doesi(α) in R, then

Kiϕ is a necessary condition for doesi(α) in R.
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Knowledge and Coordination

Proof of KoP

r

r0

doesi(↵)

', doesi(↵)

', doesi(↵)

', doesi(↵)

Ki'

r00

r000

α is a conscious action for i

ϕ is a necessary condition for doesi(α)
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Deriving Efficient Protocols

An Application: Distributed Consensus

Model:

0 1 2 3 4 5

.

.

.

.

1
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1

1

1

1

1

1

1

1

1

i

1

2

3

n

..

.

..

.

a complete communication graph with n nodes
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Deriving Efficient Protocols

An Application: Distributed Consensus

Model:
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a discrete global clock, messages take 1 round
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Deriving Efficient Protocols
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crash failures: at most t < n processes fail per run
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Deriving Efficient Protocols

An Application: Distributed Consensus

Model:
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a process is correct in r if it doesn’t crash
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Deriving Efficient Protocols

Consensus

Protocol Specification:

In every run with no more than t processes crashes:

Decision: Every correct process must decide on some value

Validity: decidei(v) is allowed only if someone voted v (“∃v”)

Agreement: All correct processes decide on the same value

correct = does not crash
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Deriving Efficient Protocols

t + 1 round Lower Bound

Theorem (Dolev-Strong ’82, Fischer-Lynch ’82)

Every consensus protocol must have a (worst-case) run in which
the last correct process requires at least t + 1 rounds to decide.
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Deriving Efficient Protocols

A Knowledge-based Analysis: Deciding on 0

Validity: A necessary condition for decidei(v) is ∃v , for v = 0,1

By Validity, ∃0 is a necessary condition for decidei(0).

By KoP, Ki∃0 is a necessary condition for decidei(0).
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Deriving Efficient Protocols

Knowing ∃0
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Kj∃0 holds if vj = 0 or j received a message from a process that knows ∃0.
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Deriving Efficient Protocols

Knowing ∃0

¬Ki�0

Kj�0

How can one proc know ∃0 when another does not?
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Deriving Efficient Protocols
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Deriving Efficient Protocols
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Claim: If Kj∃0 & ¬Ki∃0 at time m, then ≥ m crashes have occurred
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Deriving Efficient Protocols
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Corollary: At time t + 1, either everyone knows ∃0 or nobody does
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Deriving Efficient Protocols

A Simple Consensus Protocol

Protocol P0 (for undecided process i):

if time = t + 1 & ¬Ki∃0 then decidei(0)

elseif time = t + 1 & ¬Ki∃0 then decidei(1)

Communication is according to the fip.

Optimal: All decisions at time t + 1
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Deriving Efficient Protocols

A Better Protocol

Protocol Q0 (for undecided process i):

if Ki∃0 then decidei(0)

elseif time = t + 1 & ¬Ki∃0 then decidei(1)

Optimal: All decisions by time t + 1
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Deriving Efficient Protocols

Q0 Dominates P0

An adversary is a pair β = (V ,F)
V = (v1, . . . , vn) determines the initial values
F is the failure pattern — who crashes, when, and how

Definition
Protocol P ′ dominates protocol P if, for all adv. β, process i and time k,
if i decides at time k in P[β] then it decides by time k in P ′[β].

Claim
Q0 strictly dominates P0.

Can Q0 be dominated?
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Deriving Efficient Protocols

Adversaries

Time of last 
decision
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Deriving Efficient Protocols
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Deriving Efficient Protocols

A Knowledge-based Analysis: Deciding on 1

Suppose the rule for deciding 0 is Kj∃0⇔decidej(0).

When can decidei(1) be performed?

Recall:
Agreement: All correct processes decide on the same value

By Agreement, “no currently active process decides 0” is a necessary
condition for decidei(1); so

ψ = “no active process knows ∃0” is a nec. cond. for decidei(1);

By the KoP, Ki(nobody_knows∃0) is a necessary condition for
decidei(1).
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Deriving Efficient Protocols

An Unbeatable Consensus Protocol [Castañeda, Gonczarowski & M. ’14]

Protocol OPT0 (for undecided process i):

if Ki∃0 then decidei(0)

elseif Ki(nobody_knows∃0) then decidei(1)

By the KoP:

decidei(0) is performed as soon as possible

decidei(1) is performed asap, given the rule for decide(0)
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By the KoP:

decidei(0) is performed as soon as possible

decidei(1) is performed asap, given the rule for decide(0)
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Implemented OPT0 [Castañeda, Gonczarowski & M. ’14]

Protocol OPT0 (for undecided process i):

if Ki∃0 then decidei(0)

elseif Ki(nobody_knows∃0) then decidei(1)

My name is Sherlock Holmes.
It is my business to know
what other people don’t know.

The Adventure of the Blue Carbuncle, 1892
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Implementing OPT0

Protocol OPT0 (for undecided process i):

if Ki∃0 then decidei(0)

elseif Ki(nobody_knows∃0) then decidei(1)

To test for Ki(nobody_knows∃0), recall the analysis of Kj∃0&¬Ki∃0
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Process i ’s view contains a hidden path
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Each node ⟨h, k⟩ is seen, crashed or hidden w.r.t. ⟨i ,m⟩
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A Standard Protocol for OPT0 [Castañeda, Gonczarowski & M. ’14]

Standard OPT0 (for undecided process i):

if seen 0 then decidei(0)

elseif some time k is revealed to i then decidei(1)

Theorem (CGM)
OPT0 dominates Q0

No consensus protocol dominates OPT0 (it is unbeatable)

OPT0 implementable using O(logn) bit messages on average
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Another Example
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Deriving Efficient Protocols

Another Example: Majority Consensus

In addition to Decision, Validity and Agreement, we require:

Majority Rule: A correct process will

decide 0 if it discovers ≥ n/2 of the votes are 0

decide 1 if it discovers > n/2 of the votes are 1

SIROCCO 2016, Helsinki (:-) A Useful Design Principle July 19th, 2016 37 / 43



Deriving Efficient Protocols

All-case Optimal Majority Consensus

Standard OPTmc (for undecided process i):

if seen ≥n/2 votes of 0 then decidei(0)

elseif seen >n/2 votes of 1 then decidei(1)

elseif some time k is revealed to i &
seen more votes for v than 1 − v then decidei(v)
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Majority Consensus
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A hidden path can report all of the unknown votes 

Kj (Maj = 1 )?
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All-case Optimality

Theorem (CGM)
The protocol OPTmc :

solves Majority Consensus

dominates all protocols for Majority Consensus

decides in ≤ f + 1 rounds (aka “early stopping”)

is implementable using O(logn) bit messages on average

Treats “0” and “1” fairly
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Adversaries

Time of last 
decision

1
2

t+1

OPTmc

1 0
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KoP Revisited

The KoP is a universal theorem for distributed systems

KoP applies more generally:

Suppose that a legal system satisfies that Judge punishes X only if
X committed the crime. By KoP, when deciding to punish the judge
must know that X committed the crime.

A jellyfish does not sting its own body. By KoP the jellyfish cell must
know not my body when it launches a sting.

Consider a (Turing) machine that will perform accept on a
word x ∈ {0,1}∗ only if x ∈ L for a given language L. Then the TM
head must know, based on the current state and the letter seen on the
tape, that x ∈ L.
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Deriving Efficient Protocols

Conclusions

KoP formally relates knowledge and action

Protocol specifications induce epistemic conditions

Knowledge is an essential aspect of distributed protocols

Knowledge-based analysis facilitates design of efficient protocols

Diverse applications including VLSI, Biology, real-time coordination
and more

Thank You!
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