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Motivation

THEME

SIROCCO is devoted to the study of the interplay between
communication and knowledge in multi-processor systems from both
the qualitative and quantitative viewpoints. Special emphasis is given to

innovative approaches and fundamental understanding...
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-
Many Models of Distributed Computing

@ Communication: Message passing, shared memory, visual signalling
o Topology: Fixed, Dynamic

e Timing: Clocks, timing guarantees on actions and events (synchrony
asynchrony, partial synchrony)

@ Computing power: From mainframes, servers, mobile devices,
low-powered sensors

@ Failure modes, Uniqueness of ID’s, etc...
No unifying “Turing-machine” model for distributed systems

Lack of general results that apply to “all systems"
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Computing the Max

Example: Computing the Maximum (CTM)

ot b & &

@ Each node i has an initial value v;

@ Agent 1 must print the maximal value
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Computing the Max

Example: Computing the Maximum (CTM)

-
| v2=100

*

o After receiving “v, = 100" Agent 1 has the maximum.

Can she act?
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Example: Computing the Maximum (CTM)
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Computing the Max

Collecting Values

@ Collecting all values is not necessary
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Computing the Max

Collecting Values

® 100

@ Collecting all values is not necessary
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Collecting Values
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Collecting all values is not sufficient
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Collecting Values
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Collecting all values is not sufficient:
Alice might not know that she has all values
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Computing the Max

What is CTM about if not collecting values?

Knowledge

Knowing that Max = c is necessary and sufficient for printing c.

SIROCCO 2016, (=) A Useful Design Principle July 19th, 2016

6/ 43



Knowledge of Preconditions

Knowing that Max = ¢ can depend on:

@ Messages received
@ The agents’ protocol
@ The domain of possible initial values

The network topology

Timing guarantees re: communication, synchrony, activation

Possibility of failures, ...

Needing to know the maximum is an instance of a general principle
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The Knowledge of Preconditions Principle (KoP)

If © must be true | when / performs « J

Then  Kip must be true | when i performs « )

SIROCCO 2016, (=) A Useful Design Principle July 19th, 2016 8 /43



The Knowledge of Preconditions Principle (KoP)

If © must be true | when / performs « J

Then  Kip must be true | when i performs « )

If good credit is a prerequisite for ATM payment

Then K,im(credit)  is a prerequisite for ATM payment
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The Knowledge of Preconditions Principle (KoP)

If  must be true | when i performs « )

Then  Kip must be true | when / performs « J

If Empty Critical Section is a prerequisite for i entering the CS

Then Ki(empty CS) is a prerequisite for / entering the CS

This is useful for analyzing Mutual Exclusion [M.&Patkin 2015]
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The Knowledge of Preconditions Principle (KoP)

If © must be true | when / performs « J

Then  Kip must be true | when i performs « )

If Alice has moved is a prerequisite for Bob's move

Then  Kpop(Alice has moved) is a prerequisite for Bob's move
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Knowledge of Preconditions

The Knowledge of Preconditions Principle (KoP)

If © must be true | when i performs « )

Then  Kip must be true | when i performs « J

= All standard specifications are epistemic:

Knowledge is a prerequisite for action

This is a fundamental theorem of multi-agent systems
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A Theory of Knowledge in Distributed Systems

A three decades old theory of knowledge is based on

o Kripke 1950's, Hintikka [1962], Aumann [1976]

Halpern and M. [1984]

Parikh and Ramanujam [1985]

Chandy and Misra [1986]

Fagin et al. [1995], Reasoning about Knowledge s
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Modeling Knowledge in Distributed Systems

Basic notion: Indistinguishability

v

1 has the same state at both points
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Modeling Knowledge in Distributed Systems

Basic notion: Indistinguishability
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Modeling Knowledge in Distributed Systems

Basic notion: Indistinguishability
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Modeling Knowledge in Distributed Systems

Defining Knowledge in Pictures
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Modeling Knowledge in Distributed Systems

Defining Knowledge in Pictures
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Modeling Knowledge in Distributed Systems

Defining Knowledge in Pictures
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Modeling Knowledge in Distributed Systems

Defining Knowledge in Pictures
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Modeling Knowledge in Distributed Systems

Defining Knowledge more formally [Fagin et al. 1995]

@ Arunis asequence r:N—>G of global states.

@ A system is a set R of runs.

Assumption

Each global state r(t) determines a local state r;(t) for every agent i. J

Definition
(R,r,t) £ Kip iff (R,r',t")E ¢ forall points (r',t") of R
such that ri(t) =r/(t').
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Runs and points

A point (r,t) refers to time t in run r.

Facts are "true" or "false" at a point.

R x N = Pts(R) is the set of points in system R.

(r0)  (r1)  (r2) (r3)  (r4) (rt)

00000 @ >




A Propositional Logic of Knowledge

Starting from a set ® of primitive propositions, define LK = £K(®) by

p = ped | p | prp | Kip | | Kap

Given an interpretation 7 : ® x Pts(R) — {True, False}

(Ryr,t)Ep, for ped, iff w(p,r,t)="True.

(R,rt) E - iff (R,rt) o
(Ryryit) Epnt iff both (R,r,t) E @ and (R,r,t) E.
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Knowledge = Truth in All Possible Worlds

(R,r,t) £ Kip iff (R,r',t')E ¢ forall points (r',t") of R
such that ri(t)=r/(t").

SIROCCO 2016, () A Useful Design Principle July 19th, 2016 16 / 43



Knowledge = Truth in All Possible Worlds

(R,r,t) £ Kip iff (R,r',t')E ¢ forall points (r',t") of R
such that ri(t)=r/(t").
Comments:
The definition ignores the complexity of computing knowledge
Local information = current local state.
Kip holds if ¢ is guaranteed to hold in R given i's local state.

The knowledge operator K; is an §5 modal operator.
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Necessary Conditions for Actions (aka “preconditions”)

Max = c is a necessary condition for print,(c) in CTM.

Definition
1 is a necessary condition for does;(c) in R if

(R,r,t) & does;(a) =1 forall (r,t) € Pts(R).

Specifications impose necessary conditions:

@ “Good credit” is necessary for ATM dispensing cash

e “CS is empty” is necessary for entering the CS in Mutual Exclusion



Knowledge and Coordination

Knowledge of Preconditions

Definition
o is a conscious action for i in R if

(R,r,t) =doesi(a) & r!(t")=ri(t) implies (R,r',t")E does;(a)

Theorem (KoP, [M. 2015])
Suppose that « is a conscious action for i in the system R.
If ¢ is a necessary condition for does;(a) in R, then

Kip is a necessary condition for does;(a) in R.
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Proof of KoP

does; («)
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o is a conscious action for i

@ is a necessary condition for does; ()
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Proof of KoP
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Knowledge and Coordination

Proof of KoP
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Proof of KoP

Kip
does; («)
oY -
I\ ]
Y //
7“/ o= YN~ >
\ \ \ g
\ Lo does; ()
,r// C ) _
: >
p, does; () )
T,// 7~y -
\ o
v, does; ()

o is a conscious action for i

@ is a necessary condition for does; ()

SIROCCO 2016, () A Useful Design Principle July 19th, 2016 19 / 43



An Application: Distributed Consensus

Model:
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a complete communication graph with n nodes
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An Application: Distributed Consensus
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each process i starts with an initial “vote" v; € {0,1}
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An Application: Distributed Consensus

Model:
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a discrete global clock, messages take 1 round
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Deriving Efficient Protocols

An Application: Distributed Consensus
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full-information protocol (fip): Processes broadcast their complete history
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An Application: Distributed Consensus

Model:

crash failures
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An Application: Distributed Consensus

Model:

crash failures: at most t < n processes fail per run

SIROCCO 2016, (

A Useful Design Principle July 19th, 2016

20 / 43



An Application: Distributed Consensus

Model:

a process is correct in r if it doesn't crash
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Deriving Efficient Protocols

Consensus

Protocol Specification:

In every run with no more than t processes crashes:

Decision: Every correct process must decide on some value
Validity: decide;i(v) is allowed only if someone voted v (“3v")

Agreement: All correct processes decide on the same value

correct = does not crash
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Deriving Efficient Protocols

t +1 round Lower Bound

Theorem (Dolev-Strong '82, Fischer-Lynch '82)

Every consensus protocol must have a (worst-case) run in which

the last correct process requires at least t + 1 rounds to decide.
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A Knowledge-based Analysis: Deciding on 0

Validity: A necessary condition for decide;(v) is Jv, for v=0,1

e By Validity, 30 is a necessary condition for decide;(0).

@ By KoP, K;30 is a necessary condition for decide;(0).
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Knowing 30
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K;30 holds if v; = 0 or j received a message from a process that knows 30.
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Knowing 30
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How can one proc know 30 when another does not?
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Knowing 30
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Knowing 30
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Knowing 30

Claim: If K;30 & -K;30 at time m, then > m crashes have occurred
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Knowing 30

Corollary: At time t + 1, either everyone knows 30 or nobody does
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Deriving Efficient Protocols

A Simple Consensus Protocol

Protocol P, (for undecided process /):

if time=t+1 & K;30 then decide;(0)

elseif time=t+1 & -K;30 then decide;(1)

Communication is according to the fip.

Optimal: All decisions at time t + 1
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A Better Protocol

Protocol Qp (for undecided process /):
if K;30 then decide;(0)

elseif time=t+1 & -K;30 then decide;(1)

Optimal: All decisions by time t + 1
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®Qo Dominates P,

An adversary is a pair B = (V,F)
o V =(v,...,v,) determines the initial values

@ F is the failure pattern — who crashes, when, and how

Definition
Protocol P’ dominates protocol P if, for all adv. 3, process i and time k,
if i decides at time k in P[] then it decides by time k in P'[3].

Claim
Qo strictly dominates Py. J
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Deriving Efficient Protocols

t+1

Time of last
decision
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] 1

Adversaries
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®Qo Dominates P,

An adversary is a pair B = (V,F)
o V =(v,...,v,) determines the initial values

@ F is the failure pattern — who crashes, when, and how

Definition
Protocol P’ dominates protocol P if, for all adv. 3, process i and time k,
if i decides at time k in P[] then it decides by time k in P'[3].

Claim
Qo strictly dominates Py. J

Can Qg be dominated?
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A Knowledge-based Analysis: Deciding on 1

Suppose the rule for deciding 0 is  K;30 <> decide;(0).
When can decide;(1) be performed?

Recall:
Agreement: All correct processes decide on the same value

@ By Agreement, “no currently active process decides 0" is a necessary
condition for decide;(1); so

@ 1 = “no active process knows 30" is a nec. cond. for decide;(1);

@ By the KoP, K,-(nobody_knowsHO) is a necessary condition for
decide;(1).
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Deriving Efficient Protocols

An Unbeatable Consensus Protocol [Castafieda, Gonczarowski & M. '14]

Protocol OPTy (for undecided process /):

if K;30 then decide;(0)

elseif K;j(nobody_knows30) then decide(1)
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Deriving Efficient Protocols

An Unbeatable Consensus Protocol [Castafieda, Gonczarowski & M. '14]

Protocol OPTy (for undecided process /):

if K;30 then decide;(0)

elseif K;j(nobody_knows30) then decide(1)

By the KoP:

@ decide;(0) is performed as soon as possible

@ decidej(1) is performed asap, given the rule for decide(0)
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Deriving Efficient Protocols

Im plemented OP TO [Castafieda, Gonczarowski & M. '14]

Protocol OPTy (for undecided process /):

if K;30 then decide;(0)

elseif K;j(nobody_knows30) then decide;(1)

My name is Sherlock Holmes.
It is my business to know
what other people don’t know.

The Adventure of the Blue Carbuncle, 1892
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Implementing OPT,

Protocol OPTy (for undecided process 7):

if K;30 then decide;(0)

elseif K,-(nobody_knowsEIO) then decide;i(1)

To test for K,-(nobody_knowsﬂO), recall the analysis of K;30& -K;30
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Deriving Efficient Protocols
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Deriving Efficient Protocols

K,-(nobody_knowsEIO) does not hold
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Deriving Efficient Protocols
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The world according to i
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Deriving Efficient Protocols
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Process i's view contains a hidden path
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Deriving Efficient Protocols
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Each node (h, k) is seen, crashed or hidden w.r.t. (i, m)
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Deriving Efficient Protocols
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Time k is revealed at (i, m) if all nodes (h, k) are not hidden
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Deriving Efficient Protocols
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If time k is revealed and -K;30 then -K;30
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Deriving Efficient Protocols
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If time k is revealed and —K;30 then K,-(nobody_knowsEIO)
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Deriving Efficient Protocols
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K,-(nobody_knowsHO) iff some time k is revealed and -K;30
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Deriving Efficient Protocols
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K,-(nobody_knowsHO) iff some time k is revealed and -K;30
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A Sta ndard PI’OtOCOI fOI' OP TO [Castafieda, Gonczarowski & M. '14]

Standard OPT (for undecided process /):

if seen 0 then decide;(0)

elseif some time k is revealed to /i then decidei(1)

Theorem (CGM)
o OPTy dominates Qg

e No consensus protocol dominates OPTy (it is unbeatable)

e OPTy implementable using O(logn) bit messages on average
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Deriving Efficient Protocols

Another Example
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Deriving Efficient Protocols

Another Example: Majority Consensus

In addition to Decision, Validity and Agreement, we require:

Majority Rule: A correct process will
decide 0 if it discovers > n/2 of the votes are 0

decide 1 if it discovers > n/2 of the votes are 1
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Deriving Efficient Protocols

All-case Optimal Majority Consensus

Standard OPT,, (for undecided process /):

if seen >n/2 votes of 0 then decide;(0)
elseif seen >n/2 votes of 1 then decide;i(1)

elseif some time k is revealed to i &
seen more votes for v than 1 —v  then decide;(v)
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Majority Consensus
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A hidden path can report all of the unknown votes
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All-case Optimality

Theorem (CGM)
The protocol OPT p,:

@ solves Majority Consensus

@ dominates all protocols for Majority Consensus

@ decides in < f +1 rounds (aka “early stopping”)
e is implementable using O(logn) bit messages on average
@ Treats “0” and “1" fairly
v
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t+1 —

Time of last
decision

mc

2 OPT,
1

Adversaries
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KoP Revisited

The KoP is a universal theorem for distributed systems
KoP applies more generally:
e Suppose that a legal system satisfies that Judge punishes X only if

X committed the crime. By KoP, when deciding to punish the judge
must know that X committed the crime.
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KoP Revisited

The KoP is a universal theorem for distributed systems

KoP applies more generally:

o A jellyfish does not sting its own body. By KoP the jellyfish cell must
know not my body when it launches a sting.
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KoP Revisited

The KoP is a universal theorem for distributed systems

KoP applies more generally:

o Consider a (Turing) machine that will perform accept on a
word x € {0,1}* only if x € L for a given language L. Then the TM
head must know, based on the current state and the letter seen on the

tape, that x € L.
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Deriving Efficient Protocols

Conclusions

KoP formally relates knowledge and action

Protocol specifications induce epistemic conditions

Knowledge is an essential aspect of distributed protocols
Knowledge-based analysis facilitates design of efficient protocols

Diverse applications including VLSI, Biology, real-time coordination
and more

Thank Youl
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