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Main focus

s-t Distance
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Known

(1+e)-approx. in Q(n1/2+D) time

About this talk

Open problem Technical challenge

1. Exact O(n1-e+D) time Avoid bounded-hop distances!

2. Directed O(n1/2+D) time Avoid sparse spanner, etc.!



Note
polylog terms will be 

hidden most of the time
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Plan

1. Problem & Known Results
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2. Open Problems

3. Technical Challenges



CONGEST Model
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Part 1.1
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Network represented by a weighted graph G
with n nodes and hop-diameter D.

n=6
D=2
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Nodes know only local information



Time complexity 
“number of days”
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Days: Exchange one bit

1
Day
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Nights: Perform local computation
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Assume: Any calculation finishes in one night
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2
Day

2
Night

Nights: Perform local computation
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Finish in t days 
 Time complexity = t
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Unweighted 
s-t distance
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Part 1.2



15

Goal: Node t knows distance from s
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Distance from s = ?
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O(D) time using
Breadth-First Search (BFS) algorithm.
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There is an W(D) lower bound.

Unweighted Case
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This algorithm takes Q(D) time
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How about
weighted graphs?
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Part 1.3



1

2
3

4

5
6

4

3
6

1

1

1

1

1

1

4

3

7
4

4

4
1

1

24

Input: weighted network 
Remark: Weights do not affect the communication, edge weights ≤ O(polylog n)
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s-t distance
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2-approximation
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A naïve solution
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Aggregate everything into one node.
Then solve the problem on that node.

Time = O(# of edges)

(using “pipelining” technique)



Can we do better?
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Why distributed s-t distance?

• Among active research on distributed 
algorithms for basic graph problems
– MST, Connectivity, Matching, etc.

• Connection to other distributed algorithmic 
problems
– Routing, APSP, Diameter, Eccentricity, Radius, etc.

• Provide distributed algorithmic viewpoint
– Complement with data streams, dynamic 

algorithms, parallel algorithms, etc. 
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Known Results
for s-t distance
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Part 1.4

(All results also hold for sing-source distance.)



Reference Time Approximation

Folklore W(D) any
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Reference Time Approximation

Folklore W(D) any

Bellman&Ford [1950s] O(n) exact
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Reference Time Approximation

Folklore W(D) any

Bellman&Ford [1950s] O(n) exact

Elkin [STOC 2006] W((n/a)1/2 + D) any a

33
- polylog(n/e) factors are hidden



Reference Time Approximation

Folklore W(D) any

Bellman&Ford [1950s] O(n) exact

Elkin [STOC 2006] W((n/a)1/2 + D) any a

Das Sarma et al [STOC 2011]

Elkin et al. [PODC 2014]
W(n1/2 + D) any a

also quantum
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- polylog(n/e) factors are hidden
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Reference Time Approximation

Folklore W(D) any

Bellman&Ford [1950s] O(n) exact

Elkin [STOC 2006] W((n/a)1/2 + D) any a

Das Sarma et al [STOC 2011]

Elkin et al. [PODC 2014]
W(n1/2 + D) any a

also quantum

Lenzen,Patt-Shamir 
[STOC 2013]

O(n1/2+e+ D) O(1/e)

- polylog(n/e) factors are hidden

- Lenzen&Patt-Shamir actually achieve more than computing distances
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Reference Time Approximation

Folklore W(D) any

Bellman&Ford [1950s] O(n) exact

Elkin [STOC 2006] W((n/a)1/2 + D) any a

Das Sarma et al [STOC 2011]

Elkin et al. [PODC 2014]
W(n1/2 + D) any a

also quantum

Lenzen,Patt-Shamir 
[STOC 2013]

O(n1/2+e+ D) O(1/e)

N [STOC 2014] O(n1/2D1/4+ D) 1+e

- polylog(n/e) factors are hidden

- Lenzen&Patt-Shamir actually achieve more than computing distances



Reference Time Approximation

Folklore W(D) any

Bellman&Ford [1950s] O(n) exact

Elkin [STOC 2006] W((n/a)1/2 + D) any a

Das Sarma et al [STOC 2011]

Elkin et al. [PODC 2014]
W(n1/2 + D) any a

also quantum

Lenzen,Patt-Shamir 
[STOC 2013]

O(n1/2+e+ D) O(1/e)

N [STOC 2014] O(n1/2D1/4+ D) 1+e

Henzinger,Krinninger,N
[STOC 2016]

O(n1/2+o(1) + D1+o(1))
(Deterministic)

1+e
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- polylog(n/e) factors are hidden

- Lenzen&Patt-Shamir actually achieve more than computing distances



Reference Time Approximation

Folklore W(D) any

Bellman&Ford [1950s] O(n) exact

Elkin [STOC 2006] W((n/a)1/2 + D) any a

Das Sarma et al [STOC 2011]

Elkin et al. [PODC 2014]
W(n1/2 + D) any a

also quantum

Lenzen,Patt-Shamir 
[STOC 2013]

O(n1/2+e+ D) O(1/e)

N [STOC 2014] O(n1/2D1/4+ D) 1+e

Henzinger,Krinninger,N
[STOC 2016]

O(n1/2+o(1) + D1+o(1))
(Deterministic)

1+e

Becker, Karrenbauer,
Krinninger, Lenzen [2016]

O(n1/2 + D)
(Deterministic)

1+e
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*

*

- All previous results except Becker et al. can compute shortest-paths tree



Main focus

s-t Distance

39

Known

(1+e)-approx. in Q(n1/2+D) time

Summary of Part 1

Distributed approximate
s-t distance are essentially solved.



Plan

1. Problem & Known Results
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2. Open Problems

3. Technical Challenges



Exact algorithms

41

Part 2.1



Is there a sublinear-time exact
algorithm for s-t distance?

• Current lower bound: W(n1/2 + D)

• (1+e)-approx. algorithms need O(n1/2 + D) time

• Exact algorithm: no O(n1-e + D)  known

42



Exact case also open for 
many other graph problems.
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Is there a linear-time exact algorithm 
for all-pairs distances ?

• Current lower bound: W(n).

• We have linear-time (1+e)-approx. algorithm. 
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?

?

?

All-Pairs Shortest Paths

?

?

Distance from 1, 2, …, 5 = ?

source



Directed Case
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Part 2.2
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Directed case
Note: Two-way communication, not affected by weights.

dist(6, 3)=1

1 dist(3, 6)=2
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Directed s-t  & single-source distances

Reference Time Approximation

N [STOC’14] O(n1/2D1/2+D) 1+e

Ghaffari, Udwani [PODC’15] O(n1/2D1/4+D) Reachability

Open

O(n1/2+D)-time (any)-approximation algorithm.



Congested Cliques
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Part 2.3
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Congested Clique:
The underlying network is fully connected
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s-t distance, congested clique

Reference Time Approximation

N [STOC’14] O(n1/2) exact

Censor-Hillel et al.
[PODC’15]*

O(n1/3)
O(n0.15715)

exact
1+e

Henzinger,Krinninger,N
[STOC’16]

O(no(1)) 1+e

Becker, Karrenbauer,
Krinninger, Lenzen [2016]

polylog(n) 1+e

Open: Better exact algorithm? Lower bound?

* Censor-Hillel et al.’s result works for APSP
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All-pairs distances

Reference Time Approximation

N [STOC’14] O(n1/2) 2+e

Censor-Hillel, 
Kaski, Korhonen, 
Lenzen, Paz, 
Suomela [PODC’15]

O(n1/3)
O(n0.15715)

exact
1+e

Le Gall [DISC’16] • Additional algebraic tools (e.g. determinant)
• Applications to, e.g., maximum matching

Connection to matrix multiplication 

Open: 
1. Better exact and approximation algorithm.
2. Explore the power of algebraic techniques on congested cliques. 
3. Lower bounds?



Lower Bounds on Congested Clique?

Drucker et al [PODC’14]: 

• Not so easy. 

• Will imply something big in circuit complexity.
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Other Related
Problems
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Part 2.4
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Algorithm Time Approximation

BFS D 2

Holzer et al. [PODC’12]

for small D
W(n) 3/2-e

Holzer et al. [PODC’12]

Peleg et al. [ICALP’12]

O(n) exact

Frischknecht et al. 
[SODA’12]

W((n/D)1/2+D) 3/2-e

Lenzen-Peleg [PODC’13] O(n1/2+D) 3/2

Holzer et al. [DISC’14] O((n/D)1/2+D) 3/2+e

Open (By Holzer) W(n/D+D) 1+e

Diameter (unweighted)

56Also: Eccentricity, radius, etc.

[Censor-Hillel et al. DISC’16]: Result holds for any D and even for sparse graph 
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Algorithm Time Approximation

Holzer et al. [PODC’12] W(n) 2-e

Becker et al. [2016] O(n1/2 + D) 2+e

Open sublinear 2

Diameter (weighted)

Intermediate problem to exact SSSP
(Getting a sublinear-time exact algorithm for SSSP will resolve this)
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T1

small “routing table”



Some open problems
Thanks: Christoph Lenzen

• Eliminate no(1) term as in the case of s-t 
shortest path. 
– Techniques from s-t SP usually transfer to the 

routing problem. 

– Exception: Becker et al [2016]

• Lower bounds on the construction time for 
stateful routing. 

• Further read: Elkin, Neiman [PODC’16] & 
Lenzen, Patt-Shamir [STOC’13]

59
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Summary of Part 2

Open problem

1. Exact O(n1-e+D) time

2. Directed O(n1/2+D) time



Plan

1. Problem & Known Results
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2. Open Problems

3. Technical Challenges



Framework for approximate
s-t shortest paths

62



63

1. Input graph

2. Skeleton

3. Sparse Spanner, etc.

Additional work

bounded-hop distances
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1. Input graph 
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2. Skeleton
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3. Sparse spanner, etc.
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1. Input graph

2. Skeleton

Additional work

bounded-hop distances

Challenge for exact case

Challenge for directed case

3. Sparse Spanner, etc.



Exact case challenge:
bounded-hop distance

68

Part 3.1



Reference Time Approximation

Bellman&Ford [1950s] O(n) exact

Das Sarma et al [STOC 2011] W(n1/2 + D) any a

OPEN O(n1-e+D) exact

69- polylog(n/e) factors are hidden

Recall



Definition: h-hop distance

• disth(u,v) := smallest total weight among u-v 
paths containing at most h edges.

70
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dist(1, 6) = 3 
dist1(1, 6) = 4



Definition: h-hop distance

• disth(u,v) := smallest total weight among u-v 
paths containing at most h edges.

• k-sources h-hop distances: find disth(si, v) for 
all k sources s1, …, sk, and all nodes v.

71

Theorem
We can find k-sources 

(1+e)-approx.  h-hop distances in 

O(k+h/e) time



\begin{technical}

72Skip



Approximating k-sources h-hop distances 

in the weighted case is as easy as  

computing a BFS tree on unweighted graphs

73

Key idea: Weight rounding



1. Pretend that the graph is unweighted
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2. Round weight -- ignore small errors
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Approximating k-sources h-hop distances 

1. Pretend that the graph is unweighted.

2. Round weight -- ignore small errors. 

3. With appropriate rounding, we get distance 
O(h) and (1+e) approximation.

4. Run BFS algorithms from k sources in parallel.

See N [STOC’14] for more details.

76



\end{technical}
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Theorem (recall)
We can find k-sources 

(1+e)-approx.  h-hop distances in 

O(k+h/e) time



Answer (Lenzen, Patt-Shamir [PODC’15]): 

No. o(kh) time is impossible. 

79

Question
Can we find k-sources 

(1+e)-approx. exact h-hop distances in 

O(k+h) time?

If so, we will be able to solve SSSP exactly in sublinear 
time and APSP exactly in linear time



Challenge for exact computation

k-sources h-hop distances – avoid 
it to get O(n1-e+D) time!

80



Directed case challenge:
sparse spanner

81

Part 3.2
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Recall: Directed s-t  & single-source distances

Reference Time Approximation

N [STOC’14] O(n1/2D1/2+D) 1+e

Ghaffari, Udwani [PODC’15] O(n1/2D1/4+D) Reachability

OPEN O(n1/2+D) 1+e or just
reachability
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1. Input graph

2. Skeleton

3. Sparse structure
(spanner/hopset)

Additional work

bounded-hop distances

Challenge for directed case



Definition: Spanner

• p-spanner: Subgraph that preserves distances 
with multiplicative error 

84

a

d

e
f

c

b
a

d

e
f

c

b

input graph 2-spanner



Computing spanner on distributed networks

• Baswana-Sen [Rand. Struct & Alg. 2007]: 
(2p-1)-spanner of size O(n1+1/p) in O(p) rounds 
for any p. 

• There’s a huge literature on this. 

– See, e.g., Pettie  [Dist. Comp. 2010]

85
* It was pointed out by Pettie that the size of Baswana-Sen’s spanner is O(kn+(log n)n1+1/k) 



Exists sparse directed spanner?
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No:



\begin{technical}

87Skip



Definitions

• p-spanner: Subgraph that preserves distances 
with multiplicative error p

• p-emulators: Graph on the same set of 
vertices that preserves distances

88
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Hopset [Cohen, JACM’00] 

89

(h,e)-hopset of a network G = (V,E) 

is a set E* of new weighted edges such that 

h-edge paths  in H=(V, E∪E*)

give (1+ε) approximation to distances in G. 



Example (1)

Add shortcuts between every pairInput graph

90
Picture from Cohen [JACM’00]
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Example (1)

Add shortcuts between every pairInput graph

91
Picture from Cohen [JACM’00]
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Example (1)

Input graph

Picture from Cohen [JACM’00]
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(1, 0)-hopset
one edge is enough
to get distance

no error



Example (2)

Input graph with (5, 0)-hopset
Input graph

93
Picture from Cohen [JACM’00]

11



Exists sparse directed
emulator/hopset?

(No)
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\end{technical}
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Challenge for directed case

Can we avoid the use of sparse 
spanner and related structures? 
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Main focus

s-t Shortest Paths
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Known

(1+e)-approx. in Q(n1/2+D) time

Summary

Open problem Technical challenge

1. Exact O(n1-e+D) time Avoid bounded-hop distances!

2. Directed O(n1/2+D) time Avoid sparse spanner, etc.!



Thank you
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