Challenges in Distributed Shortest Paths Algorithms

Danupon Nanongkai KTH Royal Institute of Technology, Sweden

About this talk

Main focus s-t Distance

$$\frac{Known}{(1+\epsilon)}$$
-approx. in $\Theta(n^{1/2}+D)$ time

Open problem	Technical challenge
1. Exact O($n^{1-\epsilon}$ +D) time	Avoid bounded-hop distances!
2. Directed O(n ^{1/2} +D) time	Avoid sparse spanner, etc.!

<u>Note</u> polylog terms will be hidden most of the time

Plan

1. Problem & Known Results

2. Open Problems

3. Technical Challenges

<u>Part 1.1</u>

CONGEST Model

Network represented by a weighted graph G with n nodes and hop-diameter D.

Nodes know only local information

Time complexity "number of days"

Days: Exchange one bit

Nights: Perform local computation

Assume: Any calculation finishes in one night 10

Days: Exchange one bit

Nights: Perform local computation

Finish in t days → Time complexity = t

<u>Part 1.2</u>

Unweighted s-t distance

Unweighted Case

O(D) time using Breadth-First Search (BFS) algorithm.

There is an $\Omega(D)$ lower bound.

Source node sends its distance to neighbors

Each node updates its distance

Nodes tell new knowledge to neighbors

Night 2

Each node updates its distance

This algorithm takes $\Theta(D)$ time

Part 1.3

How about weighted graphs?

Input: weighted network

<u>Remark</u>: Weights do not affect the communication, edge weights \leq O(polylog n)

s-t distance

2-approximation

A naïve solution

Aggregate everything into one node. Then solve the problem on that node.

Time = O(# of edges)

(using "pipelining" technique)

Can we do better?

Why distributed s-t distance?

 Among active research on distributed algorithms for basic graph problems

– MST, Connectivity, Matching, etc.

Connection to other distributed algorithmic problems

- Routing, APSP, Diameter, Eccentricity, Radius, etc.

- Provide distributed algorithmic viewpoint
 - Complement with data streams, dynamic algorithms, parallel algorithms, etc.

Part 1.4

Known Results for s-t distance

(All results also hold for sing-source distance.)

	Reference	Time	Approximation
\Rightarrow	Folklore	Ω(D)	any

	Reference	Time	Approximation
	Folklore	Ω(D)	any
\Rightarrow	Bellman&Ford [1950s]	O(n)	exact

Reference	Time	Approximation
Folklore	Ω(D)	any
Bellman&Ford [1950s]	O(n)	exact
Elkin [STOC 2006]	$\Omega((n/\alpha)^{1/2} + D)$	any α

	Reference	Time	Approximation
	Folklore	Ω(D)	any
	Bellman&Ford [1950s]	O(n)	exact
	Elkin [STOC 2006]	$\Omega((n/\alpha)^{1/2} + D)$	any α
\Rightarrow	Das Sarma et al [STOC 2011] Elkin et al. [PODC 2014]	$\Omega(n^{1/2} + D)$	any $lpha$ also quantum

Reference	Time	Approximation
Folklore	Ω(D)	any
Bellman&Ford [1950s]	O(n)	exact
Elkin [Stoc 2006]	$\Omega((n/\alpha)^{1/2} + D)$	any α
Das Sarma et al [STOC 2011] Elkin et al. [PODC 2014]	$\Omega(n^{1/2} + D)$	any $lpha$ also quantum
Lenzen,Patt-Shamir [STOC 2013]	$O(n^{1/2+\epsilon} + D)$	Ο(1/ε)

- polylog(n/ ϵ) factors are hidden

- Lenzen&Patt-Shamir actually achieve more than computing distances

Reference	Time	Approximation
Folklore	Ω(D)	any
Bellman&Ford [1950s]	O(n)	exact
Elkin [stoc 2006]	$\Omega((n/\alpha)^{1/2} + D)$	any α
Das Sarma et al [STOC 2011] Elkin et al. [PODC 2014]	$\Omega(n^{1/2} + D)$	any α also quantum
Lenzen,Patt-Shamir [STOC 2013]	O(n ^{1/2+ε} + D)	Ο(1/ε)
N [STOC 2014]	O(n ^{1/2} D ^{1/4} + D)	1+e

- polylog(n/ ϵ) factors are hidden

- Lenzen&Patt-Shamir actually achieve more than computing distances
| | Reference | Time | Approximation |
|--|---|--|------------------------------|
| | Folklore | Ω(D) | any |
| | Bellman&Ford [1950s] | O(n) | exact |
| | Elkin [STOC 2006] | $\Omega((n/\alpha)^{1/2} + D)$ | any α |
| | Das Sarma et al [STOC 2011]
Elkin et al. [PODC 2014] | $\Omega(n^{1/2} + D)$ | any α
also quantum |
| | Lenzen,Patt-Shamir
[STOC 2013] | O(n ^{1/2+ε} + D) | Ο(1/ε) |
| | N [STOC 2014] | O(n ^{1/2} D ^{1/4} + D) | 1+e |
| | Henzinger, Krinninger, N
[STOC 2016] | $O(n^{1/2+o(1)} + D^{1+o(1)})$ (Deterministic) | 1+ε |

- polylog(n/ ϵ) factors are hidden
- Lenzen&Patt-Shamir actually achieve more than computing distances

R	leference	Time	Approximation	
F	olklore	Ω(D)	any	
B	ellman&Ford [1950s]	O(n)	exact	
E	Ikin [STOC 2006]	$\Omega((n/\alpha)^{1/2} + D)$	any α	
C E	Das Sarma et al [sтос 2011] Ikin et al. [PODC 2014]	$\Omega(n^{1/2} + D)$	any α also quantum	*
L [S	enzen,Patt-Shamir STOC 2013]	O(n ^{1/2+ε} + D)	Ο(1/ε)	
Ν	STOC 2014]	O(n ^{1/2} D ^{1/4} + D)	1+e	
- [S	lenzinger,Krinninger,N STOC 2016]	$O(n^{1/2+o(1)} + D^{1+o(1)})$ (Deterministic)	1+ε	
B K	ecker, Karrenbauer, Trinninger, Lenzen [2016]	O(n ^{1/2} + D) (Deterministic)	1+e	*

- All previous results except Becker et al. can compute shortest-paths tree

Ц

*

Summary of Part 1

Main focus s-t Distance

(1+ ε)-approx. in $\Theta(n^{1/2}+D)$ time

Distributed **approximate** s-t distance are essentially **solved**.

Plan

1. Problem & Known Results

2. Open Problems

3. Technical Challenges

Part 2.1

Exact algorithms

Is there a sublinear-time exact algorithm for s-t distance?

- Current lower bound: $\Omega(n^{1/2} + D)$
- $(1+\varepsilon)$ -approx. algorithms need $O(n^{1/2} + D)$ time
- Exact algorithm: no $O(n^{1-\epsilon} + D)$ known

Exact case also open for many other graph problems.

Is there a linear-time exact algorithm for all-pairs distances ?

- Current lower bound: $\Omega(n)$.
- We have linear-time $(1+\epsilon)$ -approx. algorithm.

All-Pairs Shortest Paths

Part 2.2

Directed Case

Directed case

Note: Two-way communication, not affected by weights.

Directed s-t & single-source distances

Reference	Time	Approximation
N [STOC'14]	O(n ^{1/2} D ^{1/2} +D)	1+ε
Ghaffari, Udwani [PODC'15]	O(n ^{1/2} D ^{1/4} +D)	Reachability

<u>Open</u> O(n^{1/2}+D)-time (any)-approximation algorithm.

Part 2.3

Congested Cliques

<u>Congested Clique:</u> The underlying network is *fully connected*

s-t distance, congested clique

Reference	Time	Approximation
N [STOC'14]	O(n ^{1/2})	exact
Censor-Hillel et al. [PODC'15]*	O(n ^{1/3}) O(n ^{0.15715})	exact 1+ε
Henzinger,Krinninger,N [STOC'16]	O(n ^{o(1)})	1+e
Becker, Karrenbauer, Krinninger, Lenzen [2016]	polylog(n)	1+e

<u>Open</u>: Better exact algorithm? Lower bound?

All-pairs distances

Reference	Time	Approximation
N [STOC'14]	O(n ^{1/2})	2+ε
Censor-Hillel, Kaski, Korhonen, Lenzen, Paz, Suomela [PODC'15]	O(n ^{1/3}) O(n ^{0.15715}) Connection to matrix r	exact $1+\epsilon$ multiplication
Le Gall [DISC'16]	 Additional algebraic tools (e.g. determinant) Applications to, e.g., maximum matching 	

<u>Open</u>:

- 1. Better exact and approximation algorithm.
- 2. Explore the power of algebraic techniques on congested cliques.
- 3. Lower bounds?

Lower Bounds on Congested Clique?

Drucker et al [PODC'14]:

- Not so easy.
- Will imply something big in *circuit complexity*.

Part 2.4

Other Related Problems

Diameter (unweighted)

Algorithm	Time	Approximation
BFS	D	2
Holzer et al. [PODC'12] for small D [Censor-Hillel et al. DISC'16]: Result	$\Omega({\sf n})$ holds for any D and even f	$3/2-\varepsilon$ for sparse graph
Holzer et al. [PODC'12] Peleg et al. [ICALP'12]	O(n)	exact
Frischknecht et al. [SODA'12]	$\Omega((n/D)^{1/2}+D)$	3/2-ε
Lenzen-Peleg [PODC'13]	O(n ^{1/2} +D)	3/2
Holzer et al. [DISC'14]	O((n/D) ^{1/2} +D)	3/2+ε
Open (By Holzer)	$\Omega(n/D+D)$	1+ε

Also: Eccentricity, radius, etc.

Diameter (weighted)

Algorithm	Time	Approximation
Holzer et al. [PODC'12]	Ω(n)	2-ε
Becker et al. [2016]	$O(n^{1/2} + D)$	2+ε
Open	sublinear	2
\land		

Intermediate problem to exact SSSP

(Getting a sublinear-time exact algorithm for SSSP will resolve this)

Some open problems

Thanks: Christoph Lenzen

- Eliminate n^{o(1)} term as in the case of s-t shortest path.
 - Techniques from s-t SP usually transfer to the routing problem.
 - Exception: Becker et al [2016]
- Lower bounds on the construction time for stateful routing.
- Further read: Elkin, Neiman [PODC'16] & Lenzen, Patt-Shamir [STOC'13]

Summary of Part 2

Open problem

1. Exact O(n^{1-ε}+D) time

2. Directed $O(n^{1/2}+D)$ time

Plan

1. Problem & Known Results

2. Open Problems

3. Technical Challenges

Framework for approximate s-t shortest paths

1. Input graph

3. Sparse spanner, etc.

<u>Part 3.1</u>

Exact case challenge: bounded-hop distance

<u>Recall</u>

Reference	Time	Approximation
Bellman&Ford [1950s]	O(n)	exact
Das Sarma et al [STOC 2011]	$\Omega(n^{1/2} + D)$	any α
OPEN	O(n ^{1-ε} +D)	exact

Definition: h-hop distance

 dist^h(u,v) := smallest total weight among u-v paths containing at most h edges.

dist(1, 6) = 3dist¹(1, 6) = 4

Definition: h-hop distance

- dist^h(u,v) := smallest total weight among u-v paths containing at most h edges.
- k-sources h-hop distances: find dist^h(s_i, v) for all k sources s₁, ..., s_k, and all nodes v.

$\frac{\text{Theorem}}{\text{We can find k-sources}}$ $(1+\epsilon)\text{-approx. h-hop distances in}$ $O(k+h/\epsilon) \text{ time}$

\begin{technical}

Approximating k-sources h-hop distances in the weighted case is as easy as computing a BFS tree on unweighted graphs

Key idea: Weight rounding

1. Pretend that the graph is unweighted ---- 3-hop Shortest paths -----**V**₁ V_0 V_2 V_3 G: 1,000 V_1 V_2 V_3 G: 100 100

Approximating k-sources h-hop distances

- 1. Pretend that the graph is unweighted.
- 2. Round weight -- ignore small errors.
- 3. With appropriate rounding, we get distance O(h) and $(1+\varepsilon)$ approximation.
- 4. Run **BFS** algorithms from **k** sources in parallel.

See N [STOC'14] for more details.

\end{technical}

 $\frac{\text{Theorem (recall)}}{\text{We can find k-sources}}$ $(1+\epsilon)\text{-approx. h-hop distances in } O(k+h/\epsilon) \text{ time}$

<u>Question</u> Can we find k-sources (1+c)-approx. exact h-hop distances in O(k+h) time?

If so, we will be able to solve **SSSP** exactly in sublinear time **and APSP** exactly in linear time

Answer (Lenzen, Patt-Shamir [PODC'15]):

No. o(kh) time is impossible.

Challenge for exact computation

k-sources h-hop distances – avoid it to get O(n^{1-ε}+D) time!

Part 3.2

Directed case challenge: sparse spanner

Recall: Directed s-t & single-source distances

Reference	Time	Approximation
N [STOC'14]	O(n ^{1/2} D ^{1/2} +D)	1+ε
Ghaffari, Udwani [PODC'15]	O(n ^{1/2} D ^{1/4} +D)	Reachability
OPEN	O(n ^{1/2} +D)	1+ε or just reachability

Definition: Spanner

 p-spanner: Subgraph that preserves distances with multiplicative error

2-spanner

Computing spanner on distributed networks

- Baswana-Sen [Rand. Struct & Alg. 2007]:
 (2p-1)-spanner of size O(n^{1+1/p}) in O(p) rounds for any p.
- There's a huge literature on this.
 - See, e.g., Pettie [Dist. Comp. 2010]

* It was pointed out by Pettie that the size of Baswana-Sen's spanner is $O(kn+(\log n)n^{1+1/k})^{\sim}$

Exists sparse directed spanner?

\begin{technical}

Definitions

- p-spanner: Subgraph that preserves distances with multiplicative error p
- p-emulators: Graph on the same set of vertices that preserves distances

input graph

2-spanner

2-emulator

Hopset [Cohen, JACM'00]

(h,ε)-hopset of a network G = (V,E)
is a set E* of new weighted edges such that
 h-edge paths in H=(V, EUE*)
give (1+ε) approximation to distances in G.

Example (1)

Example (1)

Add shortcuts between every pair

Example (1)

Example (2)

Exists sparse directed emulator/hopset? (No)

\end{technical}

Challenge for directed case

Can we avoid the use of sparse spanner and related structures?

Summary

Main focus s-t Shortest Paths

$$\frac{Known}{(1+\epsilon)}$$
-approx. in $\Theta(n^{1/2}+D)$ time

Open problem	Technical challenge
1. Exact O(n ^{1-ε} +D) time	Avoid bounded-hop distances!
2. Directed O(n ^{1/2} +D) time	Avoid sparse spanner, etc.!

Thank you