What Makes a Distributed Problem Truly Local?

or: why might "Coloring" just possibly be easier than "MIS"?

Adrian Kosowski

IRIF and Inria Paris

Includes results of work with: Pierre Fraigniaud, Cyril Gavoille, Marc Heinrich, and Marcin Markiewicz

SIROCCO 2016 – Helsinki, July 20, 2016

Outline

- What problems do we consider local?
 - The LOCAL model
 - MIS and Coloring
 - A Constraint Satisfaction framework
- What problems do **others** consider local?
 - Some insights from QCA and tiling communities
 - Non-signaling and its implications
 - What does this all mean for us?

What problems do we consider local?

The LOCAL model

Assumptions of the LOCAL model

- The distributed system consists of a set of processors V, |V| = n.
- The system operates in synchronous rounds, with no faults.
- The system input is encoded as a labeled graph G= (V,E)
 - node labels (inputs) are given as x(v), for $v \in V$.
- The result of computations is given through local variables y(v), for $v \in V$.
- Messages exchanged in each round may have unbounded size.
- The computational capabilities of each node are unbounded.
- As a rule, we will assume that nodes have unique identifiers.

The LOCAL model

Assumptions of the LOCAL model

- The distributed system consists of a set of processors V, |V| = n.
- The system operates in synchronous rounds, with no faults.
- The system input is encoded as a labeled graph G= (V,E)
 - node labels (inputs) are given as x(v), for $v \in V$.
- The result of computations is given through local variables y(v), for $v \in V$.
- Messages exchanged in each round may have unbounded size.
- The computational capabilities of each node are unbounded.
- As a rule, we will assume that nodes have unique identifiers.

Motivation? Understanding limits of locality in distributed computing.

Sandbox for running simple greedy/distributed algorithms (auctions/pricing, load balancing, LLL,...)

- The most constrained local setting:
 - *G* has constant maximum degree
 - Algorithms are allowed to run for O(1) rounds
- In this setting, deterministic approaches make the most sense.
- **Example:** recoloring a ring to use fewer colors [Cole-Vishkin 1986]

- The most constrained local setting:
 - *G* has constant maximum degree
 - Algorithms are allowed to run for O(1) rounds
- In this setting, deterministic approaches make the most sense.
- **Example:** recoloring a ring to use fewer colors [Cole-Vishkin 1986]

- The most constrained local setting:
 - G has constant maximum degree
 - Algorithms are allowed to run for O(1) rounds
- In this setting, deterministic approaches make the most sense.
- **Example:** recoloring a ring to use fewer colors [Cole-Vishkin 1986]

- The most constrained local setting:
 - G has constant maximum degree
 - Algorithms are allowed to run for O(1) rounds
- In this setting, deterministic approaches make the most sense.
- **Example:** recoloring a ring to use fewer colors [Cole-Vishkin 1986]

- The most constrained local setting:
 - *G* has constant maximum degree
 - Algorithms are allowed to run for O(1) rounds
- In this setting, deterministic approaches make the most sense.
- **Example:** recoloring a ring to use fewer colors [Cole-Vishkin 1986]
 - We can reduce a *c*-coloring to a *O*(log *c*)-coloring of a ring in a single communication round.
 - Same approach can be applied for any graph of constant maximum degree.
- What can we compute in O(1) rounds?

survey [Suomela, 2013]

Fast distributed algorithms in LOCAL

- More parameters:
 - Number of rounds depends on the number of nodes *n*
 - Number of rounds depends on maximum degree Δ
- Randomization can make a difference
- Considered problems: local validity of a solution can be checked by each node by looking at the states of its neighbors (1-LCA)
- Two basic benchmark problems:
 - "Easier": (Δ +1)-coloring
 - "Harder": Maximal Independent Set (MIS)

	Deterministic		Randomized	
(Δ +1)-coloring:	$2^{O(\sqrt{\log n})}$ $\tilde{O}(\sqrt{\Delta}) + \log^* n$	[PS92] [FHK16]	$O(\sqrt{\log \Delta}) + 2^{O(\sqrt{\log \log n})}$ $\Omega(\log^* n)$ for $\Delta = 2$	[HSS16] [L92]
MIS:	$2^{O(\sqrt{\log n})}$ O(Δ) + log* n	[PS92] [BE09]	$O(\log \Delta) + 2^{O(\sqrt{\log \log n})}$ $\Omega(\sqrt{\log n} / \sqrt{\log \log n})$ for $\Delta = 2^{O(\sqrt{\log n \log n})}$	[BEPS12] [KMW04]

[Linial 1992] [Panconesi & Srinivasan 1992] [Kuhn, Moscibroda, Wattenhoffer 2004] [Barenboim & Elkin 2009] [Barenboim, Elkin, Pettie, Schneider 2012] [Fraigniaud, Heinrich, K. 2016] [Harris, Schneider, Su 2016]

	Deterministic		Randomized	
(∆+1)-coloring:	$2^{O(\sqrt{\log n})}$ $\tilde{O}(\sqrt{\Delta}) + \log^* n$	[PS92] [FHK16]	$\frac{O(\sqrt{\log \Delta})}{\Omega(\log^* n)} + 2^{O(\sqrt{\log \log n})}$ for $\Delta = 2$	[HSS16] [L92]
MIS:	2 ^{O(√log n)} O(∆) + log* n	[PS92] [BE09]	$O(\log \Delta) + 2^{O(\sqrt{\log \log n})}$ $\Omega(\sqrt{\log n} / \sqrt{\log \log n})$ $for \Delta = 2^{O(\sqrt{\log n} \log n)}$	[BEPS12] [KMW04] g log n))

Question 1: Is MIS harder than coloring?

• Yes, in the randomized model.

	Deterministic		Randomized	
(Δ +1)-coloring:	$\frac{2^{O(\sqrt{\log n})}}{\tilde{O}(\sqrt{\Delta}) + \log^* n}$	[PS92] [FHK16]	$O(\sqrt{\log \Delta}) + 2^{O(\sqrt{\log \log n})}$ $\Omega(\log^* n)$ for $\Delta = 2$	[HSS16] [L92]
MIS:	2 ^{O(√log n)} O(Δ) + log* <i>n</i>	[PS92] [BE09]	$O(\log \Delta) + 2^{O(\sqrt{\log \log n})}$ $\Omega(\sqrt{\log n} / \sqrt{\log \log n})$ for $\Delta = 2^{O(\sqrt{\log n} \log n)}$	[BEPS12] [KMW04] g log n))

Question 1: Is MIS harder than coloring?

- Yes, in the randomized model.
- Possibly, in the deterministic model.

	Deterministic		Randomized	
(∆+1)-coloring:	$2^{O(\sqrt{\log n})}$ $\tilde{O}(\sqrt{\Delta}) + \log^* n$	[PS92] [FHK16]	$O(\sqrt{\log \Delta}) + 2^{O(\sqrt{\log \log n})}$ $\Omega(\log^* n) \text{ for } \Delta = 2$	[HSS16] [L92]
MIS:	$2^{O(\sqrt{\log n})}$ $O(\Delta) + \log^* n$	[PS92] [BE09]	$O(\log \Delta) + 2^{O(\sqrt{\log \log n})}$ $\Omega(\sqrt{\log n} / \sqrt{\log \log n})$ for $\Delta = 2^{O(\sqrt{\log n \log n})}$	[BEPS12] [KMW04] g log n))

Question 2: Does randomization help in the LOCAL model?

(Yes, but this is not apparent from the above table.)

LOCAL: Time of coloring with different pallettes

	Deterministic	Randomized	
2 colors: (path) [Linial 1992]	Θ	(<i>n</i>)	
Ο(Δ/log Δ) colors: (triangle-free) [Pettie & Su, 2013]		O(log n) (roughly)	
Δ colors: (tree, Δ >54) [Chang, Kopelowitz, Pettie 2016]	$\Theta(\log_{\Delta} n)$	$\Theta(\log_{\Delta}\log n)$	
Ο(Δ²) colors: [Linial 1992]	$\Theta(\log^* n)$		

LOCAL: Time of coloring with different pallettes

	Deterministic	Randomized
2 colors: (path) [Linial 1992]	Θ	(<i>n</i>)
Ο(Δ/log Δ) colors: (triangle-free) [Pettie & Su, 2013]		O(log n) (roughly)
Δ colors: (tree, Δ >54) [Chang, Kopelowitz, Pettie 2016]	$\Theta(\log_{\Delta} n)$	$\Theta(\log_{\Delta}\log n)$
Ο(Δ²) colors: [Linial 1992]	Θ(log	g* n)

Constraint Satisfaction in the LOCAL model

Constraint density vs. hardness

The picture in the centralized world: Centralized SAT on random instances

Density = constraints / variables

Encoding problems through edge constraints

Setting:

- We are given a simple (1-round) algorithm or routine which tries to do something meaningful
 - "obtain a partial coloring of the graph with a given pallette"
 - "extend an IS towards a MIS by including new nodes"
- The routine assigns an output state $y(v) \in L(v)$ to each node v
- Assumption: for any pair of neighbors u, v, we can locally tell if the states y(u) and y(v) are compatible just by looking at the edge {u, v}
 - coloring fails locally if y(u) = y(v).
 - Independent Set fails locally if y(u) = 1 and y(v) = 1.

How constraining is the problem we are considering?

Constraint density vs. hardness

Edge constraint formulation

Probability of local failure:

- Suppose output state $y(v) \in L(v)$ is chosen by each node v *i.u.a.r.*
- What is the max. probability that y(v) violates some local constraint with respect to some neighbour?

Example 1:

- Graph coloring problem with color pallette *L* = {1, 2,..., *l*}.
- Fix color *y*(*v*) arbitrarily.
- Pr [v conflicts with an arbitrary neighbor u] = 1/l.
- Expected number of conflicts of v is at most Δ/I .

Edge constraint formulation

Probability of local failure:

- Suppose output state $y(v) \in L(v)$ is chosen by each node v *i.u.a.r.*
- What is the max. probability that y(v) violates some local constraint with respect to some neighbour?

Example 2:

- Independent set problem, $L = \{0_1, 0_2, ..., 0_{\Delta}, 1\}.$
- Suppose *y*(*v*)=1.
- Pr [v conflicts with an arbitrary neighbor u] = 1/(Δ +1).
- Expected number of conflicts of *v* is less than 1.

Density thresholds

(1) Threshold of randomized progress: Pr[conflict $\{u,v\}$] << 1/ Δ

- Expected number of a node's conflicts with its neighbors is less than 1 (regardless of the choice made by the node)
- Basic idea of **shatterring method** [Schneider et al, 2012]
 - Perform random choice of values y(v)
 - Connected components induced by conflicting nodes are small:
 Galton-Watson-type process with extinction
 - Solve problem deterministically within these components

- Caveats: random choice not applied to original problem; dependencies.
- Approach separates: randomized LOCAL from deterministic LOCAL; (Δ+1)-coloring from MIS [randomized model].

Density thresholds

(2) Threshold of deterministic progress: Pr[conflict {*u*,*v*}] < ??

- Precise formulation of conflict coloring: [Fraigniaud, Heinrich, K. 2016]
 - each node v must pick some color value $y(v) \in L(v)$, where $|L(v)| \ge l$
 - conflicting pairs of color values are known (e.g., globally)
 - each color conflicts with at most *d* other colors
 - goal: choose values y(v) so that there are no conflicts, deterministically.
- We work with the ratio d / I (= conflict degree / list length)
- Intuition: $\Pr[\operatorname{conflict} \{u,v\}] \sim d/I$

Generalizes: vertex coloring, edge coloring, list coloring, precoloring extension, coloring with forbidden color sets,...

Density thresholds

(2) Threshold of deterministic progress: Pr[conflict {*u*,*v*}] < ??

- Precise formulation of conflict coloring: [Fraigniaud, Heinrich, K. 2016]
 - each node v must pick some color value $y(v) \in L(v)$, where $|L(v)| \ge l$
 - conflicting pairs of color values are known (e.g., globally)
 - each color conflicts with at most *d* other colors
 - goal: choose values y(v) so that there are **no conflicts**, deterministically.
- We work with the ratio *d* / *I* (= conflict degree / list length)
- Intuition: Pr[**conflict** {*u*,*v*}] ~ *d* / *I*

Results:

- $d/I = \tilde{O}(1/\Delta^2)$: deterministic solution in time log* n
- $d/l < 1/\Delta$: deterministic solution in time $\tilde{O}(\Delta^{1/2}) + \log^* n$

Theorem [Linial 1992]. Given a graph G colored with k colors,

it is possible to obtain a coloring of G with $k' = 5\Delta^2 \log k$ colors, in one round.

Proof idea:

- − For each vertex v, treat its original color $i \in \{1,...,k\}$ as an index i of some set F_i in a special selective set family $\{F_1,...,F_k\}$, $F_i \subseteq \{1,...,k'\}$.
- Sets F_i have the property that for any choice of $j_1, ..., j_\Delta \neq i$, $F_i \setminus \{F_{i1} \cup ... \cup F_{i\Delta}\} \neq \emptyset$.
- Assuming $j_1, ..., j_{\Delta}$ were the colors of the neighbors of v, one can pick an arbitrary element of set $F_i \setminus \{F_{i1} \cup ... \cup F_{i\Delta}\}$ as the new color of v.

From Δ^2 -coloring to conflict coloring

- Linial's reduction mechanism gives O(Δ² log Δ)-coloring in log* n rounds. (Slight tweak allows us to have O(Δ²)-coloring; going further is hard.)
- $O(\Delta^2 \log \Delta)$ -coloring can be phrased within the conflict coloring framework with $I = \Delta^2 \log \Delta$, d=1.
 - So, we cope with at least one instance such that $d / I = \tilde{O}(1/\Delta^2)$.
 - But: Linial's solution exploits the very special form of the color lists {1,...,/}.
 - Not applicable to: list coloring, precoloring extension (!).
- When adapting the approach to work for any other reasonable coloring problem (e.g., precoloring extension), we encounter technical difficulties.

Conflict coloring simplification mechanism

Conflict coloring techniques

[Fraigniaud, Heinrich, K. 2016]

- Lemma. Given a conflict coloring instance P_i with parameters (I_i, d_i) , there exists a one-round algorithm which for each node computes its input in a new conflict coloring instance P_{i+1} with parameters (I_{i+1}, d_{i+1}) , such that:
 - A solution to P_{i+1} allows us to solve P_i in one round. (Linial-type argument)
 - The new problem P_{i+1} has an exponentially smaller conflict probability:

$$I_{i+1} / d_{i+1} > 1 / \Delta \cdot \exp [c / \Delta^2 \cdot I_i / d_i]$$

• Lemma. For sufficiently large ratio *l/d*, a conflict coloring problem whose input is based only on information contained in a relatively small ball around each node, can be solved without communication.

The general message

- Conflict coloring problems admitting natural formulations through edge constraints seem to be roughly as hard computationally as the vertex coloring problem with corresponding density.
 - E.g. current best (Δ +1)-list-coloring algorithms as fast as current best (Δ +1)-coloring algorithms.
- Controling conflicts on edges is at the heart of the currently best algorithms for deterministic and randomized (Δ +1)-coloring and for randomized MIS.
- One reason why "coloring is easier than MIS" may be that: edge constraints are easier to handle in the LOCAL model than vertex constraints.
 - Note: MIS/coloring separation not yet shown for deterministic algorithms.

What problems do others consider local?

The LOCAL model is so much fun...

... that other communities have their own versions of it, too :)

- Statistical physics bounds on rate of interaction in network models
 - Localized Quantum Operator Algebras [Robinson, Bratteli 1979]
- Theory of Cellular Automata
- Theory of Tilings

How relevant is their work to what we are doing?

Note: for those of you who prefer CONGEST, the good news is that Physicists have a couple version of that as well.

Non-signaling (=causality)

A meta-principle with a formalization for LOCAL

- Given a system evolving in discrete rounds in which information spreads at the rate of 1 unit of distance per round,
- Given a pair of nodes *u*, *v* located at distance t from each other
- The actions of *u* may only be affected by the actions of *v* taken at least *t* steps in the past.

Non-signaling property: Given two subsets of nodes S_1, S_2 of *V* such that dist $(S_1, S_2) > t$, then in any *t*-round LOCAL algorithm, the output of nodes from S_1 must be independent of the input of nodes from S_2 .

- Independence is understood in a probabilistic sense.

 S_{1}

Example 1: Two-party non-signaling box (XOR)

Goal:
$$y_a \oplus y_b = x_a \wedge x_b$$

- Zero-round fictional (oracle-based) protocol for two parties.
- If $x_a \wedge x_b = 0$, the parties output $(y_a, y_b) = (0, 0)$ or (1, 1), each with Pr=1/2.
- If $x_a \wedge x_b = 1$, the parties output $(y_a, y_b) = (0, 1)$ or (1, 0), each with Pr=1/2.
- Non-signaling is preserved.
- But: no solution in LOCAL, without communication or access to a box oracle.

Example 2: the modulo 4 problem

Mod 4 problem ("GHZ experiment")

- Graph G is an empty graph with 3 nodes $\{v_1, v_2, v_3\}$, whereas *E* is empty.
- Each node has an input label $x_i \in \{0,2\}$.
- **Goal:** output labels $y_i \in \{0, 1\}$ such that:

$$2(y_1 + y_2 + y_3) \equiv (x_1 + x_2 + x_3) \mod 4.$$

This problem cannot be solved with $Pr > \frac{3}{4}$ in LOCAL (in any time).

The problem can be solved under non-signaling, and also by extending LOCAL to include quantum information.

Example 2: the modulo 4 problem

Why is the "Mod 4" problem non-signaling?

$\begin{array}{c} \text{Input} \\ (x_1, x_2, x_3) \end{array}$	$\left \begin{array}{c} \text{Probability} \\ p^i \end{array}\right $	$\begin{array}{c} \text{Output} \\ (y_1^i, y_2^i, y_3^i) \end{array}$	$Input (x_1, x_2, x_3)$	$\left \begin{array}{c} \text{Probability} \\ p^i \end{array}\right $	$\begin{array}{c} \text{Output} \\ (y_1^i, y_2^i, y_3^i) \end{array}$
(0, 0, 0)	$ \begin{array}{c c} 1/4 \\ 1/4 \\ 1/4 \\ 1/4 \\ 1/4 \end{array} $	(0, 0, 0) (0, 1, 1) (1, 0, 1) (1, 1, 0)	(0, 1, 1) or $(1, 0, 1)$ or $(1, 1, 0)$	$ \begin{array}{c c} 1/4 \\ 1/4 \\ 1/4 \\ 1/4 \\ 1/4 \end{array} $	(1, 1, 1) (1, 0, 0) (0, 1, 0) (0, 0, 1)

Lower time bounds under non-signaling

Observation. [Gavoille, K., Markiewicz 2009] In any non-signaling world:

- The MIS problem requires $\Omega(\sqrt{\log n / \log \log n})$ rounds to solve [Kuhn, Moscibroda, Wattenhofer, 2004]
- The problem of finding a locally minimal (greedy) coloring of the system graph requires Ω(log n / log log n) rounds to solve [Gavoille, Klasing, K., Navarra, Kuszner, 2009]
- The problem of finding a spanner with O(n^{1+1/k}) edges requires Ω(k) rounds to solve [Derbel, Gavoille, Peleg, Viennot, 2008; Elkin 2007]

What about Linial's $\Omega(\log^* n)$ bound on (Δ +1)-coloring?

• Linial's neighbourhood-graph technique relies on many more properties of LOCAL than just non-signaling!

Example of non-signaling lower bounds

$\lceil n-2 \rceil / 2$ rounds equired to 2-color the path

- In any non-signaling-world, [n-2] / 2 rounds are required.
 - let t < [n-2] / 2, there will be two extremal nodes u and v of the path whose views are still disjoint
 - let $S = \{u, v\};$
 - the color values of *u* and *v* are necessarily the same if these vertices are at an even distance, and odd otherwise
 - there exist corresponding input paths G⁽¹⁾ and G⁽²⁾ with odd and even distance between *u* and *v*, respectively
 - but the difference cannot be detected based on the local views of *u* and *v*.

Non-signaling *c*-coloring of the path? (*c*>2)

Non-signaling coloring of a path – preliminaries

- It's OK to forget about node identifiers we can use random ID's in the model.
- We identify the *c*-colored *n*-node path with a sequence of random variables (X₁,...,X_n), with X_i ∈ {1,2,...,c}.
- Question (t-non-signaling c-coloring): [Benjamini, Holroyd, Weiss 2008]
 Can we define the joint distribution of random variables (X_i), so that, for all i:
 - $-X_i \neq X_{i+1}$
 - (X_1, \dots, X_i) and (X_{i+t+1}, \dots, X_n) are independent?

Non-signaling *c*-coloring of the path? (*c*>2)

Non-signaling coloring of a path – preliminaries

- It's OK to forget about node identifiers we can use random ID's in the model.
- We identify the *c*-colored *n*-node path with a sequence of random variables (X₁,...,X_n), with X_i ∈ {1,2,...,c}.
- Question (t-non-signaling c-coloring): [Benjamini, Holroyd, Weiss 2008]
 Can we define the joint distribution of random variables (X_i), so that, for all i:
 - $-X_i \neq X_{i+1}$
 - $(X_1, ..., X_i)$ and $(X_{i+t+1}, ..., X_n)$ are independent?

First attempt:

- Is it enough to pick, for successive *i*, X_{i+1} from $\{1,2,...,c\}\setminus X_i$, *u.i.a.r.*?
- Not really...

1-non-signaling 4-coloring is possible!

"Surprisingly, this can be done. It is achieved by a family of beautiful and mysterious random colourings that seemingly have no right to exist."

– A. Holroyd

details in [Holroyd & Liggett 2015], and follow-up papers.

 The construction of any *t*-non-signaling coloring, for t=*o*(log* n), cannot have bounded block support, i.e., the random variables must be in some sense defined "globally" over the whole path.

1-non-signaling 4-coloring is possible!

"Surprisingly, this can be done. It is achieved by a family of beautiful and mysterious random colourings that seemingly have no right to exist."

– A. Holroyd

details in [Holroyd & Liggett 2015], and follow-up papers.

- The construction of any t-non-signaling coloring, for t=o(log* n), cannot have bounded block support, i.e., the random variables must be in some sense defined "globally" over the whole path.
- **1-non-signaling 4-coloring** is obtained using the following algorithm:
 - Nodes arrive on the path according to a random time ordering (enumeration of {1,...,n} according to a random permutation).
 - Each node picks a free color which is not used by the closest nodes on its left and right, which have already arrived.
 - The free color picked is fixed deterministically according to a private color preference ordering of each node (we omit the details).

1-non-signaling 4-coloring is possible!

"Surprisingly, this can be done. It is achieved by a family of beautiful and mysterious random colourings that seemingly have no right to exist."

– A. Holroyd

details in [Holroyd & Liggett 2015], and follow-up papers.

- The construction of any *t*-non-signaling coloring, for t=o(log* n), cannot have bounded block support, i.e., the random variables must be in some sense defined "globally" over the whole path.
- **1-non-signaling 4-coloring** exists.
- **1-non-signaling 3-coloring** does not exist.
 - However, since we can reduce the number of colors in a 4-coloring in the standard way in the LOCAL model, 2-non-signaling 3-coloring exists.
- **Question**: if $(\Delta + 1)$ -coloring is not hard because of non-signaling, then why is it hard?

Answer: Localizability

- Non-signaling solutions may, in general, be given by a global computation the system graph and all of its inputs (=a global circuit).
- Not every non-signaling computation can be converted into a combination of circuits acting only on local views.
 - In short, not every non-signaling box can be implemented in LOCAL.
- **Question**: can we impose some **global** property on a non-signaling solution to guarantee that it can be implemented in the LOCAL model?
 - Interesting open problem, though most likely with a negative answer.
 - If we extend the LOCAL model to allow for quantum communication, then an (almost complete) answer exists.

• **Theorem** [Arrighi, Nesme, and Werner 2011].

If a *t*-non-signaling computation on the system is obtained using a global unitary operator on the quantum state spaces of all nodes of the system, then it can also be implemented by means of a *t*-round algorithm in the LOCAL model using quantum communication channels.

Unitary = preserving structure (basis, inner product) of the underlying product Hilbert space on the state spaces of the nodes.

The message, continued

- In LOCAL, lower bounds on MIS are more fundamental than those for $(\Delta+1)$ -coloring:
 - **MIS is hard because of non-signaling** ("speed-of-information")
 - (Δ+1)-coloring is only known to be hard because of localizability of distributed decision.
 - Open problem: decide the complexity of $(\Delta+1)$ -coloring under non-signaling in general graphs.

- The algebraic structure of the LOCAL model with quantum communication appears much more appealing than for classical communication.
 - It's not clear how much quantum links help us to solve MIS/coloring.

Thank you.