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• What problems do we consider local?

• The LOCAL model

• MIS and Coloring

• A Constraint Satisfaction framework

• What problems do others consider local?

• Some insights from QCA and tiling communities

• Non-signaling and its implications

• What does this all mean for us?

Outline
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What problems do we consider local?
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Assumptions of the LOCAL model

The LOCAL model

• The distributed system consists of a set of processors V, |V|=n.

• The system operates in synchronous rounds, with no faults.

• The system input is encoded as a labeled graph G= (V,E)

• node labels (inputs) are given as x(v), for vV.

• The result of computations is given through local variables y(v), for vV.

• Messages exchanged in each round may have unbounded size.

• The computational capabilities of each node are unbounded.

• As a rule, we will assume that nodes have unique identifiers.
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Assumptions of the LOCAL model

The LOCAL model

• The distributed system consists of a set of processors V, |V|=n.

• The system operates in synchronous rounds, with no faults.

• The system input is encoded as a labeled graph G= (V,E)

• node labels (inputs) are given as x(v), for vV.

• The result of computations is given through local variables y(v), for vV.

• Messages exchanged in each round may have unbounded size.

• The computational capabilities of each node are unbounded.

• As a rule, we will assume that nodes have unique identifiers.

Motivation? Understanding limits of locality in distributed computing.

Sandbox for running simple greedy/distributed algorithms (auctions/pricing, 
load balancing, LLL,...) 



Kosowski: Truly Local Problems 6/46

• The most constrained local setting:

• G has constant maximum degree

• Algorithms are allowed to run for O(1) rounds 

• In this setting, deterministic approaches make the most sense.

• Example: recoloring a ring to use fewer colors [Cole-Vishkin 1986]

Warm-up: A simple local setting

1023 2929
17
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• The most constrained local setting:

• G has constant maximum degree

• Algorithms are allowed to run for O(1) rounds 

• In this setting, deterministic approaches make the most sense.

• Example: recoloring a ring to use fewer colors [Cole-Vishkin 1986]

Warm-up: A simple local setting

1023=(1111111111) 29=(0000011101)

17 = (0000010001)
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• The most constrained local setting:

• G has constant maximum degree

• Algorithms are allowed to run for O(1) rounds 

• In this setting, deterministic approaches make the most sense.

• Example: recoloring a ring to use fewer colors [Cole-Vishkin 1986]

Warm-up: A simple local setting

1023=(1111111111) 29=(0000011101)

17 = (0000010001)
[(3,1),(1,0)][(1,1),(..,..)] [(3,0),(..,..)]
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• The most constrained local setting:

• G has constant maximum degree

• Algorithms are allowed to run for O(1) rounds 

• In this setting, deterministic approaches make the most sense.

• Example: recoloring a ring to use fewer colors [Cole-Vishkin 1986]

Warm-up: A simple local setting

[(3,1),(1,0)][(1,1),(..,..)] [(3,0),(..,..)]
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• The most constrained local setting:

• G has constant maximum degree

• Algorithms are allowed to run for O(1) rounds 

• In this setting, deterministic approaches make the most sense.

• Example: recoloring a ring to use fewer colors [Cole-Vishkin 1986]

– We can reduce a c-coloring to a O(log c)-coloring of a ring in a single
communication round.

– Same approach can be applied for any graph of constant maximum 
degree.

• What can we compute in O(1) rounds? survey [Suomela, 2013]

Warm-up: A simple local setting
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• More parameters:

• Number of rounds depends on the number of nodes n

• Number of rounds depends on maximum degree 

• Randomization can make a difference

• Considered problems: local validity of a solution can be checked 
by each node by looking at the states of its neighbors (1-LCA)

• Two basic benchmark problems:

• “Easier”: ()-coloring

• “Harder”: Maximal Independent Set (MIS)

Fast distributed algorithms in LOCAL
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LOCAL: Coloring and MIS

Deterministic Randomized

(+1)-coloring:    
2O(log n)                    [PS92]

Õ(+ log* n    [FHK16]

O(log + 2O(log log n)       [HSS16]

(log* n)    for 2                        [L92]

MIS:    
2O(log n)                    [PS92]

O() + log* n           [BE09]

O(log + 2O(log log n)              [BEPS12]

(log n / log log n)    [KMW04]

                     for 2O(log n  log log n))

[Linial 1992]  [Panconesi & Srinivasan 1992]  [Kuhn, Moscibroda, Wattenhoffer 2004]  [Barenboim & Elkin 2009]
[Barenboim, Elkin, Pettie, Schneider 2012 ] [Fraigniaud, Heinrich, K. 2016]  [Harris, Schneider, Su 2016]
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LOCAL: Coloring and MIS

Deterministic Randomized

(+1)-coloring:    
2O(log n)                    [PS92]

Õ(+ log* n    [FHK16]

O(log + 2O(log log n)       [HSS16]

(log* n)    for 2                        [L92]

MIS:    
2O(log n)                    [PS92]

O() + log* n           [BE09]

O(log + 2O(log log n)              [BEPS12]

(log n / log log n)    [KMW04]

                     for 2O(log n  log log n))

Question 1:    Is MIS harder than coloring?

•   Yes, in the randomized model.
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LOCAL: Coloring and MIS

Deterministic Randomized

(+1)-coloring:    
2O(log n)                    [PS92]

Õ(+ log* n    [FHK16]

O(log + 2O(log log n)       [HSS16]

(log* n)    for 2                        [L92]

MIS:    
2O(log n)                    [PS92]

O() + log* n           [BE09]

O(log + 2O(log log n)              [BEPS12]

(log n / log log n)    [KMW04]

                     for 2O(log n  log log n))

Question 1:    Is MIS harder than coloring?

•   Yes, in the randomized model.

•   Possibly, in the deterministic model.
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LOCAL: Coloring and MIS

Deterministic Randomized

(+1)-coloring:    
2O(log n)                    [PS92]

Õ(+ log* n    [FHK16]

O(log + 2O(log log n)       [HSS16]

(log* n)    for 2                        [L92]

MIS:    
2O(log n)                    [PS92]

O() + log* n         [BE09]

O(log + 2O(log log n)              [BEPS12]

(log n / log log n)    [KMW04]

                     for 2O(log n  log log n))

Question 2:    Does randomization help in the LOCAL model?

(Yes, but this is not apparent from the above table.)
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LOCAL: Time of coloring with different pallettes

Deterministic Randomized

2 colors:
(path)

[Linial 1992]

(n)  

O(/log ) colors:
(triangle-free)

[Pettie & Su, 2013]

O(log n)
(roughly)

colors:
(tree, >54)

[Chang, Kopelowitz, Pettie 2016]

(log n) (loglog n)

2colors:
[Linial 1992]

(log* n)    
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LOCAL: Time of coloring with different pallettes

Deterministic Randomized

2 colors:
(path)

[Linial 1992]

(n)  

O(/log ) colors:
(triangle-free)

[Pettie & Su, 2013]

O(log n)
(roughly)

colors:
(tree, >54)

[Chang, Kopelowitz, Pettie 2016]

(log n) (loglog n)

2colors:
[Linial 1992]

(log* n)    
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Constraint Satisfaction in the LOCAL model
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Constraint density vs. hardness

The picture in the centralized world:
Centralized SAT on random instances

100%
satisfiable

Density = constraints / variables

difficulty
satisfiability

Random solution 
works

Random solution 
works

Contradiction
easy to find
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Setting:

 Encoding problems through edge constraints

• We are given a simple (1-round) algorithm or routine
which tries to do something meaningful

• “obtain a partial coloring of the graph with a given pallette”

• “extend an IS towards a MIS by including new nodes”

• The routine assigns an output state y(v) L(v) to each node v

• Assumption: for any pair of neighbors u, v, we can locally tell if the states
y(u) and y(v) are compatible just by looking at the edge {u, v}

• coloring fails locally if y(u) = y(v).

• Independent Set fails locally if y(u) = 1 and y(v) = 1.

How constraining is the problem we are considering?

Setting:
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Constraint density vs. hardness

Our prediction for the LOCAL model

100%
feasible

Density = constraints / “pallette size”

difficulty

Random solution 
works

feasibility
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Setting:

 Edge constraint formulation

• Suppose output state y(v) L(v) is chosen by each node v      i.u.a.r.

• What is the max. probability that y(v) violates some local constraint with 
respect to some neighbour?

Example 1:

• Graph coloring problem with color pallette L = {1, 2,…, l}.

• Fix color y(v) arbitrarily.

• Pr [v conflicts with an arbitrary neighbor u] = 1/l.

• Expected number of conflicts of v is at most /l.

Probability of local failure:

v
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Setting:

 Edge constraint formulation

• Suppose output state y(v) L(v) is chosen by each node v      i.u.a.r.

• What is the max. probability that y(v) violates some local constraint with 
respect to some neighbour?

Example 2:

• Independent set problem, L = {01, 02 ,..., 0 , 1}.

• Suppose  y(v)=1.

• Pr [v conflicts with an arbitrary neighbor u] = 1/(+1).

• Expected number of conflicts of v is less than 1.

Probability of local failure:

v
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Setting:

Density thresholds

• Expected number of a node's conflicts with its neighbors is less than 1
(regardless of the choice made by the node)

• Basic idea of shatterring method [Schneider et al, 2012]

– Perform random choice of values y(v)

– Connected components induced by
conflicting nodes are small:
Galton-Watson-type process
with extinction

– Solve problem deterministically
within these components

• Caveats: random choice not applied to original problem; dependencies.

• Approach separates: randomized LOCAL from deterministic LOCAL;
(+1)-coloring from MIS [randomized model].

(1) Threshold of randomized progress: Pr[ conflict {u,v} ] << 1/
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Setting:

Density thresholds

• Precise formulation of conflict coloring: [Fraigniaud, Heinrich, K. 2016]

– each node v must pick some color value y(v) L(v), where |L(v)| l

– conflicting pairs of color values are known (e.g., globally)

– each color conflicts with at most d other colors 

– goal: choose values y(v) so that there are no conflicts, deterministically.

• We work with the ratio d / l           (= conflict degree / list length)

• Intuition: Pr[ conflict {u,v} ]   d / l

Generalizes: vertex coloring, edge coloring, list coloring, precoloring extension,
coloring with forbidden color sets,...

(2) Threshold of deterministic progress: Pr[ conflict {u,v} ] < ??
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Setting:

Density thresholds

• Precise formulation of conflict coloring: [Fraigniaud, Heinrich, K. 2016]

– each node v must pick some color value y(v) L(v), where |L(v)| l

– conflicting pairs of color values are known (e.g., globally)

– each color conflicts with at most d other colors 

– goal: choose values y(v) so that there are no conflicts, deterministically.

• We work with the ratio d / l           (= conflict degree / list length)

• Intuition: Pr[ conflict {u,v} ]   d / l

Results:

• d / l  =  Õ(1/2):    deterministic solution in time log* n

• d / l  < 1/:            deterministic solution in time Õ(2) + log* n

(2) Threshold of deterministic progress: Pr[ conflict {u,v} ] < ??
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Theorem [Linial 1992]. Given a graph G colored with k colors,
it is possible to obtain a coloring of G with k' = 52 log k colors, in one round.

Proof idea: 

– For each vertex v, treat its original color i   {1,...k} as an index i of some 
set Fi in a special selective set family {F1,…, Fk}, Fi   {1,…,k'}.

– Sets Fi have the property that for any choice of j1,…,j i,
Fi \ {Fj1  Fj}  .

– Assuming  j1,…,j were the colors of the neighbors of v, one can pick
an arbitrary element of set Fi \ {Fj1  Fj} as the new color of v.
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From 2-coloring to conflict coloring

• Linial's reduction mechanism gives O(2 log )-coloring in log* n rounds.
(Slight tweak allows us to have O(2)-coloring; going further is hard.)

• O(2 log )-coloring can be phrased within the conflict coloring framework
with l = 2 log , d=1. 

– So, we cope with at least one instance such that d / l = Õ(1/2).

– But: Linial's solution exploits the very special form of the color lists {1,…,l}.

– Not applicable to: list coloring, precoloring extension (!).

• When adapting the approach to work for any other reasonable coloring 
problem (e.g., precoloring extension), we encounter technical difficulties.
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Conflict coloring simplification mechanism

• Lemma. Given a conflict coloring instance Pi with parameters (li, di), there 
exists a one-round algorithm which for each node computes its input
in a new conflict coloring instance Pi+1 with parameters (li+1, di+1), such that:

– A solution to Pi+1 allows us to solve Pi in one round. (Linial-type argument)

– The new problem Pi+1 has an exponentially smaller conflict probability:

li+1 / di+1  >   1/exp [c/2    li /di ]

• Lemma. For sufficiently large ratio l/d, a conflict coloring problem whose 
input is based only on information contained in a relatively small ball around 
each node, can be solved without communication. 

[Fraigniaud, Heinrich, K. 2016]Conflict coloring techniques
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The general message

• Conflict coloring problems admitting natural formulations through edge 
constraints seem to be roughly as hard computationally
as the vertex coloring problem with corresponding density.

– E.g. current best (+1)-list-coloring algorithms as fast as current best 
(+1)-coloring algorithms.

• Controling conflicts on edges is at the heart of the currently best algorithms 
for deterministic and randomized (+1)-coloring and for randomized MIS.

• One reason why “coloring is easier than MIS” may be that:
edge constraints are easier to handle in the LOCAL model than vertex 
constraints.

– Note: MIS/coloring separation not yet shown for deterministic algorithms.
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What problems do others consider local?
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… that other communities have their own versions of it, too :)

The LOCAL model is so much fun...

• Statistical physics – bounds on rate of interaction in network models 

– Localized Quantum Operator Algebras [Robinson, Bratteli 1979]

• Theory of Cellular Automata

• Theory of Tilings 

Note: for those of you who prefer CONGEST, the good news is that Physicists 
have a couple version of that as well.

How relevant is their work to what we are doing?
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A meta-principle with a formalization for LOCAL

Non-signaling (=causality)

• Given a system evolving in discrete rounds in which information spreads
at the rate of 1 unit of distance per round,

• Given a pair of nodes u, v located at distance t from each other

• The actions of u may only be affected by the actions of v taken at least
t steps in the past.

Non-signaling property: Given two subsets of nodes S1, S2 of V such that 
dist(S1,S2) > t, then in any t-round LOCAL algorithm, the output of nodes from S1 
must be independent of the input of nodes from S2. 

– Independence is understood in a probabilistic sense.

Note: for those of you who prefer CONGEST, the good news is that Physicists 
have a couple version of that as well.

S1

S2

t



Kosowski: Truly Local Problems 34/46

Example 1: Two-party non-signaling box (XOR)

Alice

Goal:   ya⊕yb  =  xa  xb

xa 

ya 

Bob
xb 

yb 

 Zero-round fictional (oracle-based) protocol for two parties.
 If xa  xb = 0, the parties output (ya,yb) = (0,0) or (1,1), each with Pr=1/2.
 If xa  xb = 1, the parties output (ya,yb) = (0,1) or (1,0), each with Pr=1/2.
 Non-signaling is preserved.
 But: no solution in LOCAL, without communication or access to a box oracle.
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Mod 4 problem (“GHZ experiment”)

• Graph G is an empty graph with 3 nodes {v1, v2, v3}, whereas E is empty.

• Each node has an input label xi{0,2}.

• Goal: output labels yi{0,1} such that:

                     2(y1 + y2 + y3) ≡ (x1 + x2 + x3) mod 4.

This problem cannot be solved with Pr > ¾ in LOCAL (in any time).

The problem can be solved under non-signaling, and also by extending LOCAL
to include quantum information.

Example 2: the modulo 4 problem
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Why is the "Mod 4" problem non-signaling?

Example 2: the modulo 4 problem
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Lower time bounds under non-signaling

Observation. [Gavoille, K., Markiewicz 2009] In any non-signaling world:

• The MIS problem requires ((log n / log log n) ) rounds to solve
[Kuhn, Moscibroda, Wattenhofer, 2004]

• The problem of finding a locally minimal (greedy) coloring of the system 
graph requires ( log n / log log n) rounds to solve
[Gavoille, Klasing, K., Navarra, Kuszner, 2009]

• The problem of finding a spanner with O(n1+1/k) edges requires (k) 
rounds to solve  [Derbel, Gavoille, Peleg, Viennot, 2008;  Elkin 2007]

What about Linial’s (log* n) bound on (+1)-coloring?

• Linial's neighbourhood-graph technique relies on many more 
properties of LOCAL than just non-signaling!
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 n-2 / 2 rounds equired to 2-color the path

Example of non-signaling lower bounds

• In any non-signaling-world,  n-2 / 2 rounds are required.

• let t < n-2 / 2,    there will be two extremal nodes u and v of the path
whose views are still disjoint

• let S = {u,v}; 

• the color values of u and v are necessarily the same
if these vertices are at an even distance, and odd otherwise

• there exist corresponding input paths G(1)  and G(2)
 with odd

and even distance between u and v, respectively

• but the difference cannot be detected based on the local views of u and v.

u v
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Non-signaling coloring of a path – preliminaries

Non-signaling c-coloring of the path?  (c>2)

• It's OK to forget about node identifiers – we can use random ID's in the model.

• We identify the c-colored n-node path with a sequence of random variables
(X1,…,Xn), with Xi 1,2,…,c

• Question (t-non-signaling c-coloring): [Benjamini, Holroyd, Weiss 2008]

Can we define the joint distribution of  random variables (Xi), so that, for all i:

– Xi Xi+1,

– (X1,…,Xi) and (Xi+t+1,…,Xn) are independent?  
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Non-signaling coloring of a path – preliminaries

Non-signaling c-coloring of the path?  (c>2)

• It's OK to forget about node identifiers – we can use random ID's in the model.

• We identify the c-colored n-node path with a sequence of random variables
(X1,…,Xn), with Xi 1,2,…,c

• Question (t-non-signaling c-coloring): [Benjamini, Holroyd, Weiss 2008]

Can we define the joint distribution of  random variables (Xi), so that, for all i:

– Xi Xi+1,

– (X1,…,Xi) and (Xi+t+1,…,Xn) are independent?  

First attempt:

• Is it enough to pick, for successive i,  Xi+1 from  1,2,…,c\ Xi ,   u.i.a.r.?

• Not really...
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”Surprisingly, this can be done. It is achieved by a family of beautiful and 
mysterious random colourings that seemingly have no right to exist.”

–  A. Holroyd

        details in [Holroyd & Liggett 2015], and follow-up papers.

1-non-signaling 4-coloring is possible!

• The construction of any t-non-signaling coloring, for t=o(log* n), cannot have
bounded block support, i.e., the random variables must be in some sense defined 
“globally” over the whole path.
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”Surprisingly, this can be done. It is achieved by a family of beautiful and 
mysterious random colourings that seemingly have no right to exist.”

–  A. Holroyd

        details in [Holroyd & Liggett 2015], and follow-up papers.

1-non-signaling 4-coloring is possible!

• The construction of any t-non-signaling coloring, for t=o(log* n), cannot have
bounded block support, i.e., the random variables must be in some sense defined 
“globally” over the whole path.

• 1-non-signaling 4-coloring is obtained using the following algorithm:

– Nodes arrive on the path according to a random time ordering
(enumeration of {1,…,n} according to a random permutation).

– Each node picks a free color which is not used by the closest nodes on its left and 
right, which have already arrived.

– The free color picked is fixed deterministically according to a private color 
preference ordering of each node          (we omit the details).
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”Surprisingly, this can be done. It is achieved by a family of beautiful and 
mysterious random colourings that seemingly have no right to exist.”

–  A. Holroyd

        details in [Holroyd & Liggett 2015], and follow-up papers.

1-non-signaling 4-coloring is possible!

• The construction of any t-non-signaling coloring, for t=o(log* n), cannot have
bounded block support, i.e., the random variables must be in some sense defined 
“globally” over the whole path.

• 1-non-signaling 4-coloring exists.

• 1-non-signaling 3-coloring does not exist.

– However, since we can reduce the number of colors in a 4-coloring in the standard 
way in the LOCAL model, 2-non-signaling 3-coloring exists.

• Question: if (+1)-coloring is not hard because of non-signaling, then why is it hard?
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Answer: Localizability

• Non-signaling solutions may, in general, be given by a global computation the
system graph and all of its inputs (=a global circuit).

• Not every non-signaling computation can be converted into a combination of circuits 
acting only on local views.

– In short, not every non-signaling box can be implemented in LOCAL.

• Question: can we impose some global property on a non-signaling solution to 
guarantee that it can be implemented in the LOCAL model?

– Interesting open problem, though most likely with a negative answer.

– If we extend the LOCAL model to allow for quantum communication,
then an (almost complete) answer exists.
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Non signaling + Unitarity => Quantum Localizability

• Theorem [Arrighi, Nesme, and Werner 2011].

If a t-non-signaling computation on the system is obtained using a global 
unitary operator on the quantum state spaces of all nodes of the system,
then it can also be implemented by means of a t-round algorithm in the 
LOCAL model using quantum communication channels.

Unitary = preserving structure
(basis, inner product)
of the underlying product Hilbert space
on the state spaces of the nodes.
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The message, continued

• In LOCAL, lower bounds on MIS are more fundamental than those for
(+1)-coloring:

– MIS is hard because of non-signaling (”speed-of-information”)

– (+1)-coloring is only known to be hard because of localizability of 
distributed decision.

– Open problem: decide the complexity of (+1)-coloring
under non-signaling in general graphs.

• The algebraic structure of the LOCAL model with quantum communication 
appears much more appealing than for classical communication.

– It's not clear how much quantum links help us to solve MIS/coloring.
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Thank you.
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